【动态规划】代码随想录算法训练营第四十三天 |1049. 最后一块石头的重量 II,494. 目标和,474.一和零 (待补充)

本文主要是介绍【动态规划】代码随想录算法训练营第四十三天 |1049. 最后一块石头的重量 II,494. 目标和,474.一和零 (待补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1049. 最后一块石头的重量 II

1、题目链接:. - 力扣(LeetCode)

2、文章讲解:代码随想录

3、题目:

有一堆石头,每块石头的重量都是正整数。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;

如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。

最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

示例:

  • 输入:[2,7,4,1,8,1]
  • 输出:1

解释:

  • 组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
  • 组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
  • 组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
  • 组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 1000

4、视频讲解:

动态规划之背包问题,这个背包最多能装多少?LeetCode:1049.最后一块石头的重量II_哔哩哔哩_bilibili

class Solution {public int lastStoneWeightII(int[] stones) {int sum = 0;for (int i : stones) {sum += i;}int target = sum >> 1;//初始化dp数组int[] dp = new int[target + 1];for (int i = 0; i < stones.length; i++) {//采用倒序for (int j = target; j >= stones[i]; j--) {//两种情况,要么放,要么不放dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - 2 * dp[target];}
}
class Solution {public int lastStoneWeightII(int[] stones) {int sum = 0;for (int s : stones) {sum += s;}int target = sum / 2;//初始化,dp[i][j]为可以放0-i物品,背包容量为j的情况下背包中的最大价值int[][] dp = new int[stones.length][target + 1];//dp[i][0]默认初始化为0//dp[0][j]取决于stones[0]for (int j = stones[0]; j <= target; j++) {dp[0][j] = stones[0];}for (int i = 1; i < stones.length; i++) {for (int j = 1; j <= target; j++) {//注意是等于if (j >= stones[i]) {//不放:dp[i - 1][j] 放:dp[i - 1][j - stones[i]] + stones[i]dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - stones[i]] + stones[i]);} else {dp[i][j] = dp[i - 1][j];}}}System.out.println(dp[stones.length - 1][target]);return (sum - dp[stones.length - 1][target]) - dp[stones.length - 1][target];}
}

494. 目标和

1、题目链接:. - 力扣(LeetCode)

2、文章讲解:代码随想录

3、题目:

给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

示例:

  • 输入:nums: [1, 1, 1, 1, 1], S: 3
  • 输出:5

解释:

  • -1+1+1+1+1 = 3
  • +1-1+1+1+1 = 3
  • +1+1-1+1+1 = 3
  • +1+1+1-1+1 = 3
  • +1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。

提示:

  • 数组非空,且长度不会超过 20 。
  • 初始的数组的和不会超过 1000 。
  • 保证返回的最终结果能被 32 位整数存下。

4、视频链接:

动态规划之背包问题,装满背包有多少种方法?| LeetCode:494.目标和_哔哩哔哩_bilibili

class Solution {public int findTargetSumWays(int[] nums, int target) {int sum = 0;for (int i = 0; i < nums.length; i++) sum += nums[i];//如果target过大 sum将无法满足if (target < 0 && sum < -target) return 0;if ((target + sum) % 2 != 0) return 0;int size = (target + sum) / 2;if (size < 0) size = -size;int[] dp = new int[size + 1];dp[0] = 1;for (int i = 0; i < nums.length; i++) {for (int j = size; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[size];}
}

474.一和零

1、题目链接:. - 力扣(LeetCode)

2、文章讲解:代码随想录

3、题目:

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 1:

  • 输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
  • 输出:4
  • 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

  • 输入:strs = ["10", "0", "1"], m = 1, n = 1
  • 输出:2
  • 解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

提示:

  • 1 <= strs.length <= 600
  • 1 <= strs[i].length <= 100
  • strs[i] 仅由 '0' 和 '1' 组成
  • 1 <= m, n <= 100

4、视频链接:

动态规划之背包问题,装满这个背包最多用多少个物品?| LeetCode:474.一和零_哔哩哔哩_bilibili

class Solution {public int findMaxForm(String[] strs, int m, int n) {//dp[i][j]表示i个0和j个1时的最大子集int[][] dp = new int[m + 1][n + 1];int oneNum, zeroNum;for (String str : strs) {oneNum = 0;zeroNum = 0;for (char ch : str.toCharArray()) {if (ch == '0') {zeroNum++;} else {oneNum++;}}//倒序遍历for (int i = m; i >= zeroNum; i--) {for (int j = n; j >= oneNum; j--) {dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}}return dp[m][n];}
}

这篇关于【动态规划】代码随想录算法训练营第四十三天 |1049. 最后一块石头的重量 II,494. 目标和,474.一和零 (待补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/796866

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n