本文主要是介绍【动态规划】代码随想录算法训练营第四十三天 |1049. 最后一块石头的重量 II,494. 目标和,474.一和零 (待补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1049. 最后一块石头的重量 II
1、题目链接:. - 力扣(LeetCode)
2、文章讲解:代码随想录
3、题目:
有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。
示例:
- 输入:[2,7,4,1,8,1]
- 输出:1
解释:
- 组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
- 组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
- 组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
- 组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
提示:
- 1 <= stones.length <= 30
- 1 <= stones[i] <= 1000
4、视频讲解:
动态规划之背包问题,这个背包最多能装多少?LeetCode:1049.最后一块石头的重量II_哔哩哔哩_bilibili
class Solution {public int lastStoneWeightII(int[] stones) {int sum = 0;for (int i : stones) {sum += i;}int target = sum >> 1;//初始化dp数组int[] dp = new int[target + 1];for (int i = 0; i < stones.length; i++) {//采用倒序for (int j = target; j >= stones[i]; j--) {//两种情况,要么放,要么不放dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - 2 * dp[target];}
}
class Solution {public int lastStoneWeightII(int[] stones) {int sum = 0;for (int s : stones) {sum += s;}int target = sum / 2;//初始化,dp[i][j]为可以放0-i物品,背包容量为j的情况下背包中的最大价值int[][] dp = new int[stones.length][target + 1];//dp[i][0]默认初始化为0//dp[0][j]取决于stones[0]for (int j = stones[0]; j <= target; j++) {dp[0][j] = stones[0];}for (int i = 1; i < stones.length; i++) {for (int j = 1; j <= target; j++) {//注意是等于if (j >= stones[i]) {//不放:dp[i - 1][j] 放:dp[i - 1][j - stones[i]] + stones[i]dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - stones[i]] + stones[i]);} else {dp[i][j] = dp[i - 1][j];}}}System.out.println(dp[stones.length - 1][target]);return (sum - dp[stones.length - 1][target]) - dp[stones.length - 1][target];}
}
494. 目标和
1、题目链接:. - 力扣(LeetCode)
2、文章讲解:代码随想录
3、题目:
给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例:
- 输入:nums: [1, 1, 1, 1, 1], S: 3
- 输出:5
解释:
- -1+1+1+1+1 = 3
- +1-1+1+1+1 = 3
- +1+1-1+1+1 = 3
- +1+1+1-1+1 = 3
- +1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
提示:
- 数组非空,且长度不会超过 20 。
- 初始的数组的和不会超过 1000 。
- 保证返回的最终结果能被 32 位整数存下。
4、视频链接:
动态规划之背包问题,装满背包有多少种方法?| LeetCode:494.目标和_哔哩哔哩_bilibili
class Solution {public int findTargetSumWays(int[] nums, int target) {int sum = 0;for (int i = 0; i < nums.length; i++) sum += nums[i];//如果target过大 sum将无法满足if (target < 0 && sum < -target) return 0;if ((target + sum) % 2 != 0) return 0;int size = (target + sum) / 2;if (size < 0) size = -size;int[] dp = new int[size + 1];dp[0] = 1;for (int i = 0; i < nums.length; i++) {for (int j = size; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[size];}
}
474.一和零
1、题目链接:. - 力扣(LeetCode)
2、文章讲解:代码随想录
3、题目:
给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。
示例 1:
- 输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
- 输出:4
- 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
示例 2:
- 输入:strs = ["10", "0", "1"], m = 1, n = 1
- 输出:2
- 解释:最大的子集是 {"0", "1"} ,所以答案是 2 。
提示:
- 1 <= strs.length <= 600
- 1 <= strs[i].length <= 100
- strs[i] 仅由 '0' 和 '1' 组成
- 1 <= m, n <= 100
4、视频链接:
动态规划之背包问题,装满这个背包最多用多少个物品?| LeetCode:474.一和零_哔哩哔哩_bilibili
class Solution {public int findMaxForm(String[] strs, int m, int n) {//dp[i][j]表示i个0和j个1时的最大子集int[][] dp = new int[m + 1][n + 1];int oneNum, zeroNum;for (String str : strs) {oneNum = 0;zeroNum = 0;for (char ch : str.toCharArray()) {if (ch == '0') {zeroNum++;} else {oneNum++;}}//倒序遍历for (int i = m; i >= zeroNum; i--) {for (int j = n; j >= oneNum; j--) {dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}}return dp[m][n];}
}
这篇关于【动态规划】代码随想录算法训练营第四十三天 |1049. 最后一块石头的重量 II,494. 目标和,474.一和零 (待补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!