pytorch的梯度图与autograd.grad和二阶求导

2024-03-09 07:12

本文主要是介绍pytorch的梯度图与autograd.grad和二阶求导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前向与反向


  • 这里我们从 一次计算 开始比如 z=f(x,y) 讨论
  • 若我们把任意对于tensor的计算都看为函数(如将 a*b(数值) 看为 mul(a,b)),那么都可以将其看为2个过程:forward-前向,backward-反向
  • 在pytorch中我们通过继承torch.autograd.Function来实现这2个过程,详细的用法和扩展参考:https://pytorch.org/docs/stable/notes/extending.html
  • 【例子】比如我们要实现一个数值乘法z= ( x ∗ y ) 2 (x*y)^2 (xy)2

前向

  • 在前向过程中,我们主要干的事情为:1. 通过输入计算得到输出。2.保存反向传播求导数所需要的tensor到ctx(在反向传播的时候会对应的传入)
  • 【例子】1.为了反向传播求梯度保存x,y(因为我们知道 d z / d x = 2 ∗ x ∗ y 2 , d z / d y = 2 ∗ y ∗ x 2 dz/dx=2*x*y^2, dz/dy=2*y*x^2 dz/dx=2xy2,dz/dy=2yx2), 2.return ( x ∗ y ) 2 (x*y)^2 (xy)2

反向

  • 在反向传播的时候我们干的事情就是,将传入的导数(梯度)和我们在前向过程中保存的tensor进行加工,最终返回每个输入变量的梯度
  • 【例子】此时反向时应该返回 2 ∗ x ∗ x ∗ y 与 2 ∗ x ∗ y ∗ y 2*x*x*y与2*x*y*y 2xxy2xyy,分别对应 d z / d x , d z / d y dz/dx, dz/dy dz/dx,dz/dy

计算图


  • 那么对于一次计算的讨论完了,现在我们来讨论多次计算,即梯度(导数)是如何一步步的从最终的z=f(a), a=g(b), b=w©… 一层层的 传回x的。
  • 那么在pytorch中,其使用了图的数据结构,在一开始 z = x ∗ x ∗ y ∗ y z=x*x*y*y z=xxyy的例子中,z会指向x与y,方便反向传播求梯度(导数),现在若 w = z ∗ z w=z*z w=zz(关于z的函数),那么w会指向z
  • 那么 d w / d x = d w / d z ∗ d z / d x dw/dx = dw/dz * dz/dx dw/dx=dw/dzdz/dx
  • 在这里插入图片描述

需要梯度?,require_grad

  • 但是很多tensor在计算时是不需要梯度的,而保存上面那种梯度图又很费空间,pytroch默认你创建的tensor是不需要梯度的
  • 如当你使用线性层时,实际上是 w ∗ x + b w*x+b wx+b,但是其实这里传入x是需要梯度的(它又不需要学习),而w与b是模型的参数是nn.Parameters,所以他需要学习,自然需要梯度,
  • 而这里pytorch就使用一个bool标记来说明这个tensor需要梯度嘛,若他需要梯度,那么基于他的计算才会有指针指向它
  • 比如, z = x ∗ y z=x*y z=xy,若x,y都require_grad=False,则根本不会建立计算图,若x的requires_grad=True,则该计算会建立z->x的计算图

梯度函数,grad_fn

  • 当你进行了建立了计算图的计算,比如x.requires_grad=True, z = x ∗ y z=x*y z=xy, 那么z.grad_fn就会有函数指针指向反向传播的计算,这里就是这个 x ∗ y x*y xy
  • 在上图中一个节点虽然向回指向多个变量,但其实对应函数指针,其实是指向一个函数 x ∗ x ∗ y ∗ y x*x*y*y xxyy,2个箭头对应的是2个返回值 ( d z / d x , d z / d y ) (dz/dx,dz/dy) (dz/dx,dz/dy),函数指针可以在运算完了后在tensor.grad_fn看到

梯度,grad

  • 当你在正向计算时,构建完了上述的这样一个计算图,你就可以对最终得到的tensor调用backward函数,那么整个计算图就会从最后一个变量还是反向一步一步的将梯度传给每个需要保存梯度的tensor,这时可以在tensor.grad中看到,此时默认情况tensor.grad_fn会被清空。

torch.autograd.grad


  • 大部分情况下,我们都是得到loss,然后loss.backward(),模型的参数对应的每个tensor就会的到梯度,这个时候opt.step()就会根据学习率优化参数
  • 但有时候我们需要手动求导,可以使用 torch.autograd.grad函数

自变量,input

  • x,即对什么求导,当然该tensor必须requires_grad=True,在因变量的同一梯度图的后继

因变量,output

  • y,即被求导的变量,这里结合x相当于求dy/dx

加权,grad_outputs

  • pytorch中求导的因变量必须是一个shape为[1]的tensor,所以比如当backward时,我们往往取loss.sum() 或者mean(), 那么这里y是个大小不定的tensor,那么这个参数就是和y的shape一样,先令(g代表grad_outputs) L = ∑ g i j ∗ y i j L=∑g_{ij}*y_{ij} L=gijyij, 然后L在对x求导,这里求和往往我们取g=torch.ones_like(y), 相当于y.sum()
  • 一般情况下,不同batch之间的计算是独立的,所以得到的y就算sum后,每个x的得到的梯度其实是batch独立的,但是batch_norm除外,因为batch_norm,不同batch的x会与整个batch的均值做运算, 除非你手写batch_norm,并将数据均值对应的tensor mu detach掉,此时mu对于整个梯度图就是一个常数,否则mu会指向不同batch的x,导致每个x的得到的梯度其实不是batch独立的

输出

  • 输出的shape和x一样,即最终的L对于x每个位置的梯度,这也同样解释了为什么必须要对y求和得L,否则每个x中的每个位置其实对应整个tensor,y

二阶求导,create_graph

  • 那么若想二阶求导,我们举个例子z = f(x,y) , z1 = ∂f/∂x, z2 = ∂z1 / ∂y,在代码里,其实x对应X[:,0], y对应X[:,1](也可以其他对应),其实还是一个tensor
  • 那么首先把torch.autograd.grad整个过程又看为一次新的计算,在反向求导求z1时,程序会按照上述过程一步一步反向传播,而反向传播得到梯度时,其实这里又可以形成新的梯度图,z1处于整个新的梯度图顶端
  • 那么对应代码里,使用函数参数create_graph=True来告诉autograd,我这次得到的tensor是需要产生梯度图的(因为可能进一步求导)
  • 那么在代码里,我们相当于
 z1 = torch.autograd.grad(output=y,input=X,...)[0][:, 0]z2 = torch.autograd.grad(output=z1,input=X,...)[0][:, 1]若你的输入X是将x与y合成一体的,如x=X[:,0], y=X[:,1],那么你求导也只能将整体X作为输入,再从答案中获得对应的列
若你直接在求导时input=X[:,i] 这里实际上你创建了一个新tensor X[:,i] -> X, 而Z->X, 并未指向X[:,i], 故不行

在这里插入图片描述

这篇关于pytorch的梯度图与autograd.grad和二阶求导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789919

相关文章

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

【超级干货】2天速成PyTorch深度学习入门教程,缓解研究生焦虑

3、cnn基础 卷积神经网络 输入层 —输入图片矩阵 输入层一般是 RGB 图像或单通道的灰度图像,图片像素值在[0,255],可以用矩阵表示图片 卷积层 —特征提取 人通过特征进行图像识别,根据左图直的笔画判断X,右图曲的笔画判断圆 卷积操作 激活层 —加强特征 池化层 —压缩数据 全连接层 —进行分类 输出层 —输出分类概率 4、基于LeNet

pytorch torch.nn.functional.one_hot函数介绍

torch.nn.functional.one_hot 是 PyTorch 中用于生成独热编码(one-hot encoding)张量的函数。独热编码是一种常用的编码方式,特别适用于分类任务或对离散的类别标签进行处理。该函数将整数张量的每个元素转换为一个独热向量。 函数签名 torch.nn.functional.one_hot(tensor, num_classes=-1) 参数 t

pytorch计算网络参数量和Flops

from torchsummary import summarysummary(net, input_size=(3, 256, 256), batch_size=-1) 输出的参数是除以一百万(/1000000)M, from fvcore.nn import FlopCountAnalysisinputs = torch.randn(1, 3, 256, 256).cuda()fl

什么是GPT-3的自回归架构?为什么GPT-3无需梯度更新和微调

文章目录 知识回顾GPT-3的自回归架构何为自回归架构为什么架构会影响任务表现自回归架构的局限性与双向模型的对比小结 为何无需梯度更新和微调为什么不需要怎么做到不需要 🍃作者介绍:双非本科大四网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发,目前开始人工智能领域相关知识的学习 🦅个人主页:@逐梦苍穹 📕所属专栏:人工智能 🌻gitee地址:x

Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学)

🎯要点 🎯受激发射损耗显微镜算法模型:🖊恢复嘈杂二维和三维图像 | 🖊模型架构:恢复上下文信息和超分辨率图像 | 🖊使用嘈杂和高信噪比的图像训练模型 | 🖊准备半合成训练集 | 🖊优化沙邦尼尔损失和边缘损失 | 🖊使用峰值信噪比、归一化均方误差和多尺度结构相似性指数量化结果 | 🎯训练荧光显微镜模型和对抗网络图形转换模型 🍪语言内容分比 🍇Python图像归一化

Pytorch环境搭建时的各种问题

1 问题 1.一直soving environment,跳不出去。网络解决方案有:配置清华源,更新conda等,没起作用。2.下载完后,有3个要done的东西,最后那个exe开头的(可能吧),总是报错。网络解决方案有:用管理员权限打开prompt等,没起作用。3.有时候配置完源,安装包的时候显示什么https之类的东西,去c盘的用户那个文件夹里找到".condarc"文件把里面的网址都改成htt