鲸鱼算法优化LSTM超参数-神经元个数-dropout-batch_size

2024-03-08 23:20

本文主要是介绍鲸鱼算法优化LSTM超参数-神经元个数-dropout-batch_size,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、摘要

本文主要讲解:使用鲸鱼算法优化LSTM超参数-神经元个数-dropout-batch_size
主要思路:

  1. 鲸鱼算法 Parameters : 迭代次数、鲸鱼的维度、鲸鱼的数量, 参数的上限,参数的下限
  2. LSTM Parameters 神经网络第一层神经元个数、神经网络第二层神经元个数、dropout比率、batch_size
  3. 开始搜索:初始化所鲸鱼的位置、迭代寻优、返回超出搜索空间边界的搜索代理、计算每个搜索代理的目标函数、更新 Alpha, Beta, and Delta
  4. 训练模型,使用鲸鱼算法找到的最好的全局最优参数
  5. plt.show()

2、数据介绍

zgpa_train.csv
DIANCHI.csv

需要数据的话去我其他文章的评论区
可接受定制

3、相关技术

WOA算法设计的既精妙又富有特色,它源于对自然界中座头鲸群体狩猎行为的模拟, 通过鲸鱼群体搜索、包围、追捕和攻击猎物等过程实现优时化搜索的目的。在原始的WOA中,提供了包围猎物,螺旋气泡、寻找猎物的数学模型。
鲸鱼优化算法
在这里插入图片描述
PS:如陷入局部最优建议修改参数的上下限或者修改鲸鱼寻优的速度

4、完整代码和步骤

代码输出如下:

此程序运行代码版本为:

tensorflow==2.5.0
numpy==1.19.5
keras==2.6.0
matplotlib==3.5.2

在这里插入图片描述

主运行程序入口

import math
import osimport matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from tensorflow.python.keras.callbacks import EarlyStopping
from tensorflow.python.keras.layers import Dense, Dropout, LSTM
from tensorflow.python.keras.layers.core import Activation
from tensorflow.python.keras.models import Sequentialos.chdir(r'D:\项目\PSO-LSTM\具体需求')
'''
灰狼算法优化LSTM
'''
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号def creat_dataset(dataset, look_back):dataX, dataY = [], []for i in range(len(dataset) - look_back - 1):a = dataset[i: (i + look_back)]dataX.append(a)dataY.append(dataset[i + look_back])return np.array(dataX), np.array(dataY)dataframe = pd.read_csv('zgpa_train.csv', header=0, parse_dates=[0], index_col=0, usecols=[0, 5], squeeze=True)
dataset = dataframe.values
data = pd.read_csv('DIANCHI.csv', header=0)
z = data['fazhi']scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset.reshape(-1, 1))train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_size
train, test = dataset[0: train_size], dataset[train_size: len(dataset)]
look_back = 10
trainX, trainY = creat_dataset(train, look_back)
testX, testY = creat_dataset(test, look_back)def build_model(neurons1, neurons2, dropout):X_train, y_train = trainX, trainYX_test, y_test = testX, testYmodel = Sequential()model.add(LSTM(units=neurons1, return_sequences=True, input_shape=(10, 1)))model.add(LSTM(units=neurons2, return_sequences=True))model.add(LSTM(111, return_sequences=False))model.add(Dropout(dropout))model.add(Dense(55))model.add(Dense(units=1))model.add(Activation('relu'))model.compile(loss='mean_squared_error', optimizer='Adam')return model, X_train, y_train, X_test, y_testdef training(X):neurons1 = int(X[0])neurons2 = int(X[1])dropout = round(X[2], 6)batch_size = int(X[3])print([neurons1,neurons2,dropout,batch_size])model, X_train, y_train, X_test, y_test = build_model(neurons1, neurons2, dropout)model.fit(X_train,y_train,batch_size=batch_size,epochs=10,validation_split=0.1,verbose=0,callbacks=[EarlyStopping(monitor='val_loss', patience=22, restore_best_weights=True)])pred = model.predict(X_test)temp_mse = mean_squared_error(y_test, pred)print(temp_mse)return temp_mseclass woa():# 初始化def __init__(self, LB, UB, dim=4, b=1, whale_num=20, max_iter=500):self.LB = LBself.UB = UBself.dim = dimself.whale_num = whale_numself.max_iter = max_iterself.b = b# Initialize the locations of whaleself.X = np.random.uniform(0, 1, (whale_num, dim)) * (UB - LB) + LBself.gBest_score = np.infself.gBest_curve = np.zeros(max_iter)self.gBest_X = np.zeros(dim)# 适应度函数 max_depth,min_samples_split,min_samples_leaf,max_leaf_nodesdef fitFunc(self, para):# 建立模型mse = training(para)return mse# 优化模块def opt(self):t = 0while t < self.max_iter:print('At iteration: ' + str(t))for i in range(self.whale_num):# 防止X溢出self.X[i, :] = np.clip(self.X[i, :], self.LB, self.UB)  # Check boundriesfitness = self.fitFunc(self.X[i, :])# Update the gBest_score and gBest_Xif fitness <= self.gBest_score:self.gBest_score = fitnessself.gBest_X = self.X[i, :].copy()print('self.gBest_score: ', self.gBest_score)print('self.gBest_X: ', self.gBest_X)a = 2 * (self.max_iter - t) / self.max_iter# Update the location of whalesfor i in range(self.whale_num):p = np.random.uniform()R1 = np.random.uniform()R2 = np.random.uniform()A = 2 * a * R1 - aC = 2 * R2l = 2 * np.random.uniform() - 1# 如果随机值大于0.5 就按以下算法更新Xif p >= 0.5:D = abs(self.gBest_X - self.X[i, :])self.X[i, :] = D * np.exp(self.b * l) * np.cos(2 * np.pi * l) + self.gBest_Xelse:# 如果随机值小于0.5 就按以下算法更新Xif abs(A) < 1:D = abs(C * self.gBest_X - self.X[i, :])self.X[i, :] = self.gBest_X - A * Delse:rand_index = np.random.randint(low=0, high=self.whale_num)X_rand = self.X[rand_index, :]D = abs(C * X_rand - self.X[i, :])self.X[i, :] = X_rand - A * Dself.gBest_curve[t] = self.gBest_scoret += 1return self.gBest_curve, self.gBest_Xif __name__ == '__main__':'''神经网络第一层神经元个数神经网络第二层神经元个数dropout比率batch_size'''# ===========主程序================Max_iter = 3  # 迭代次数dim = 4  # 鲸鱼的维度SearchAgents_no = 2  # 寻值的鲸鱼的数量# 参数的上限UB = np.array([20, 100, 0.01, 36])# 参数的下限LB = np.array([5, 20, 0.00001, 5])# best_params is [2.e+02 3.e+02 1.e-03 1.e+00]fitnessCurve, para = woa(LB, UB, dim=dim, whale_num=SearchAgents_no, max_iter=Max_iter).opt()print('best_params is ', para)# 训练模型  使用PSO找到的最好的神经元个数neurons1 = int(para[0])neurons2 = int(para[1])dropout = para[2]batch_size = int(para[3])model, X_train, y_train, X_test, y_test = build_model(neurons1, neurons2, dropout)history = model.fit(X_train, y_train, epochs=100, batch_size=batch_size, validation_split=0.2, verbose=1,callbacks=[EarlyStopping(monitor='val_loss', patience=29, restore_best_weights=True)])trainPredict = model.predict(trainX)testPredict = model.predict(testX)trainPredict = scaler.inverse_transform(trainPredict)trainY = scaler.inverse_transform(trainY)testPredict = scaler.inverse_transform(testPredict)testY = scaler.inverse_transform(testY)trainScore = math.sqrt(mean_squared_error(trainY, trainPredict[:, 0]))# print('Train Score %.2f RMSE' %(trainScore))testScore = math.sqrt(mean_squared_error(testY, testPredict[:, 0]))# print('Test Score %.2f RMSE' %(trainScore))trainPredictPlot = np.empty_like(dataset)trainPredictPlot[:] = np.nantrainPredictPlot = np.reshape(trainPredictPlot, (dataset.shape[0], 1))trainPredictPlot[look_back: len(trainPredict) + look_back, :] = trainPredicttestPredictPlot = np.empty_like(dataset)testPredictPlot[:] = np.nantestPredictPlot = np.reshape(testPredictPlot, (dataset.shape[0], 1))testPredictPlot[len(trainPredict) + (look_back * 2) + 1: len(dataset) - 1, :] = testPredictplt.plot(history.history['loss'])plt.title('model loss')plt.ylabel('loss')plt.xlabel('epoch')plt.show()fig2 = plt.figure(figsize=(20, 15))plt.rcParams['font.family'] = ['STFangsong']ax = plt.subplot(222)plt.plot(scaler.inverse_transform(dataset), 'b-', label='实验数据')plt.plot(trainPredictPlot, 'r', label='训练数据')plt.plot(testPredictPlot, 'g', label='预测数据')plt.plot(z, 'k-', label='寿命阀值RUL')plt.ylabel('capacity', fontsize=20)plt.xlabel('cycle', fontsize=20)plt.legend()name = 'neurons1_' + str(neurons1) + 'neurons2_' + str(neurons2) + '_dropout' + str(dropout) + '_batch_size' + str(batch_size)plt.savefig('D:\项目\PSO-LSTM\具体需求\photo\\' + name + '.png')plt.show()

这篇关于鲸鱼算法优化LSTM超参数-神经元个数-dropout-batch_size的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788750

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem