杨辉三角,二项式系数,组合数,斐波那契数列

2024-03-06 18:58

本文主要是介绍杨辉三角,二项式系数,组合数,斐波那契数列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


古人就是厉害,在此%杨辉大佬,这个杨辉三角真的是好厉害啊。

杨辉三角

杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年。

排列信息:

杨辉三角有多种重要的性质。
概述:
前提:每行端点与结尾的数为1.
  1. 每个数等于它上方两数之和。
  2. 每行数字左右对称,由1开始逐渐变大。
  3. 第n行的数字有n项。
  4. 第n行数字和为2n-1
  5. 第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数
  6. 第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
  7. 每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即C(n+1,i)=C(n,i)+C(n,i-1)
  8. (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
  9. 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数
  10. 将各行数字相排列,可得11的n-1(n为行数)次方:1=11^0; 11=11^1; 121=11^2……当n>5时会不符合这一条性质,此时应把第n行的最右面的数字"1"放在个位,然后把左面的一个数字的个位对齐到十位... ...,以此类推,把空位用“0”补齐,然后把所有的数加起来,得到的数正好是11的n-1次方。以n=11为例,第十一行的数为:1,10,45,120,210,252,210,120,45,10,1,结果为 25937424601=1110

其他的找度娘,传送门:https://baike.baidu.com

这些来自度娘。

这篇关于杨辉三角,二项式系数,组合数,斐波那契数列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781005

相关文章

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

Go组合

摘要 golang并非完全面向对象的程序语言,为了实现面向对象的继承这一神奇的功能,golang允许struct间使用匿名引入的方式实现对象属性方法的组合 组合使用注意项 使用匿名引入的方式来组合其他struct 默认优先调用外层方法 可以指定匿名struct以调用内层方法 代码 package mainimport ("fmt")type People struct{}type Pe

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数_matlab pmsm-CSDN博客

组合c(m,n)的计算方法

问题:求解组合数C(n,m),即从n个相同物品中取出m个的方案数,由于结果可能非常大,对结果模10007即可。       共四种方案。ps:注意使用限制。 方案1: 暴力求解,C(n,m)=n*(n-1)*...*(n-m+1)/m!,n<=15 ; int Combination(int n, int m) { const int M = 10007; int

代码随想录训练营day37|52. 携带研究材料,518.零钱兑换II,377. 组合总和 Ⅳ,70. 爬楼梯

52. 携带研究材料 这是一个完全背包问题,就是每个物品可以无限放。 在一维滚动数组的时候规定了遍历顺序是要从后往前的,就是因为不能多次放物体。 所以这里能多次放物体只需要把遍历顺序改改就好了 # include<iostream># include<vector>using namespace std;int main(){int n,m;cin>>n>>m;std::vector<i

INDEX+SMALL+IF+ROW函数组合使用解…

很多人在Excel中用函数公式做查询的时候,都必然会遇到的一个大问题,那就是一对多的查找/查询公式应该怎么写?大多数人都是从VLOOKUP、INDEX+MATCH中入门的,纵然你把全部的多条件查找方法都学会了而且运用娴熟,如VLOOKUP和&、SUMPRODUCT、LOOKUP(1,0/....,但仍然只能对这种一对多的查询望洋兴叹。   这里讲的INDEX+SMALL+IF+ROW的函数组合,

代码随想录算法训练营Day37|完全背包问题、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯(进阶版)

完全背包问题                  和01背包最大区别就是一个物品可以重复放多次,因此遍历空间时可以从前往后。 import java.util.*;public class Main{public static void main (String[] args) {Scanner sc = new Scanner(System.in);int m = sc.nextInt

【内网】ICMP出网ew+pingtunnel组合建立socks5隧道

❤️博客主页: iknow181 🔥系列专栏: 网络安全、 Python、JavaSE、JavaWeb、CCNP 🎉欢迎大家点赞👍收藏⭐评论✍ 通过环境搭建,满足以下条件: 攻击机模拟公网vps地址,WEB边界服务器(Windows Server 2008)模拟公司对外提供Web服务的机器,该机器可以通内网,同时向公网提供服务。内网同网段存在一台Windows内网服务

UVa 10820 Send a Table (Farey数列欧拉函数求和)

这里先说一下欧拉函数的求法 先说一下筛选素数的方法 void Get_Prime(){ /*筛选素数法*/for(int i = 0; i < N; i++) vis[i] = 1;vis[0] = vis[1] = 0;for(int i = 2; i * i < N; i++)if(vis[i]){for(int j = i * i; j < N; j += i)vis[j] =