又是一大堆公式来袭~~ 二项级数的部分和另一种有意思的关系式子: ∑ k ⩽ m ( m + r k ) x k y m − k = ∑ k ≤ m ( − r k ) ( − x ) k ( x + y ) m − k , m 是 整 数 \sum_{k \leqslant m} \left( \begin{array}{c}{m+r} \\ {k}\end{array}\right)
本章讲述的是二项式系数,包含了一大堆记不住的公式@<@ 1. ( r k ) = { r ( r − 1 ) ⋯ ( r − k + 1 ) k ( k − 1 ) ⋯ ( 1 ) = r k k ! , k ⩾ 0 0 , k < 0 \left( \begin{array}{l}{r} \\ {k}\end{array}\right)=\left\{\begin{array}{l
泊松镇贴 二项分布和泊松分布的表达式 二项分布: P ( x = k ) = C n k p k ( 1 − p ) n − k P(x=k) = C_n^kp^k(1-p)^{n-k} P(x=k)=Cnkpk(1−p)n−k 泊松分布: P ( x = k ) = λ k k ! e − λ P(x=k) = \frac{\lambda^k}{k!}e^{-\lambda} P(
Theorem Let α∈R be a real number. Let x∈R be a real number such that |x|<1 . Then: (1+x)α=∑n=0∞αn−n!xn=∑n=0∞1n!(∏k=0n−1(α−k))xn where αn− denotes the falling factorial. That i
python 二项分布模拟 A binomial experiment is described by the following characteristics: 二项式实验由以下特征描述: An experiment that involves repeated trials. 涉及重复试验的实验。 Each trial can only have two possible outcom
相同知识点的题目 https://blog.csdn.net/qq_50285142/article/details/122792736 前置知识 二项式系数之和: C n 0 + C n 1 + C n 2 + C n 3 + . . . + C n n − 1 + C n n = 2 n C_n^0+C_n^1+C_n^2+C_n^3+...+C_n^{n-1}+C_n^n=2^n Cn