具体数学之二项式系数1

2024-02-20 22:18
文章标签 数学 系数 具体 二项式

本文主要是介绍具体数学之二项式系数1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本章讲述的是二项式系数,包含了一大堆记不住的公式@<@

1. ( r k ) = { r ( r − 1 ) ⋯ ( r − k + 1 ) k ( k − 1 ) ⋯ ( 1 ) = r k k ! , k ⩾ 0 0 , k &lt; 0 \left( \begin{array}{l}{r} \\ {k}\end{array}\right)=\left\{\begin{array}{l}{\frac{r(r-1) \cdots(r-k+1)}{k(k-1) \cdots(1)}=\frac{r^{k}}{k ! } , k \geqslant 0} \\ {0}, k&lt;0\end{array}\right. (rk)={k(k1)(1)r(r1)(rk+1)=k!rk,k00,k<0
当k=0时,上述结果为1
r为上指标,k为下指标,表示从r个数里面取k个的排序

2.帕斯卡三角形(杨辉三角形)
在这里插入图片描述
( r 0 ) = 1 , ( r 1 ) = r , ( r 2 ) = r ( r − 1 ) 2 \left( \begin{array}{l}{r} \\ {0}\end{array}\right)=1, \left( \begin{array}{l}{r} \\ {1}\end{array}\right)=r, \left( \begin{array}{l}{r} \\ {2}\end{array}\right)=\frac{r(r-1)}{2} (r0)=1,(r1)=r,(r2)=2r(r1)


☆ 考虑式子 ( − 1 k ) = ? ( − 1 − 1 − k ) \left( \begin{array}{c}{-1} \\ {k}\end{array}\right) \stackrel{?}{=} \left( \begin{array}{c}{-1} \\ {-1-k}\end{array}\right) (1k)=?(11k)

( − 1 k ) = ( − 1 ) ( − 2 ) ⋯ ( − k ) k ! = ( − 1 ) k \left( \begin{array}{c}{-1} \\ {k}\end{array}\right)=\frac{(-1)(-2) \cdots(-k)}{k !}=(-1)^{k} (1k)=k!(1)(2)(k)=(1)k

( − 1 − 1 − k ) = ( − 1 ) − 1 − k \left( \begin{array}{c}{-1} \\ {-1-k}\end{array}\right)=(-1)^{-1-k} (11k)=(1)1k(由上式可以得出),它是1或者-1
因此上述等式总是相等是错误的!

3.吸收等式(5.5)

( r k ) = r k ( r − 1 k − 1 ) \left( \begin{array}{l}{r} \\ {k}\end{array}\right)=\frac{r}{k} \left( \begin{array}{l}{r-1} \\ {k-1}\end{array}\right) (rk)=kr(r1k1) 整 数 k ≠ 0 整数 k \neq 0 k̸=0

4.相伴恒等式(5.7)

( r − k ) ( r k ) = r ( r − 1 k ) (r-k) \left( \begin{array}{l}{r} \\ {k}\end{array}\right)=r \left( \begin{array}{c}{r-1} \\ {k}\end{array}\right) (rk)(rk)=r(r1k)

( r − k ) ( r k ) = ( r − k ) ( r r − k ) , 对 称 性 = r ( r − 1 r − k − 1 ) , 吸 收 等 式 = r ( r − 1 k ) , 对 称 性 \begin{aligned}(r-k) \left( \begin{array}{c}{r} \\ {k}\end{array}\right) &amp;=(r-k) \left( \begin{array}{c}{r} \\ {r-k}\end{array}\right) ,对称性\\ &amp;=r \left( \begin{array}{c}{r-1} \\ {r-k-1}\end{array}\right),吸收等式 \\ &amp;=r \left( \begin{array}{c}{r-1} \\ {k}\end{array}\right) ,对称性\end{aligned} (rk)(rk)=(rk)(rrk)=r(r1rk1)=r(r1k)

5.加法公式(杨辉三角的性质)(5.8)

( r k ) = ( r − 1 k ) + ( r − 1 k − 1 ) \left( \begin{array}{l}{r} \\ {k}\end{array}\right)=\left( \begin{array}{c}{r-1} \\ {k}\end{array}\right)+\left( \begin{array}{l}{r-1} \\ {k-1}\end{array}\right) (rk)=(r1k)+(r1k1),k是整数

利用定义证明:
∑ k ⩽ n ( r + k k ) = ( r 0 ) + ( r + 1 1 ) + ⋯ + ( r + n n ) \sum_{k \leqslant n} \left( \begin{array}{c}{r+k} \\ {k}\end{array}\right)=\left( \begin{array}{l}{r} \\ {0}\end{array}\right)+\left( \begin{array}{c}{r+1} \\ {1}\end{array}\right)+\cdots+\left( \begin{array}{c}{r+n} \\ {n}\end{array}\right) kn(r+kk)=(r0)+(r+11)++(r+nn) = ( r + n + 1 n ) =\left( \begin{array}{c}{r+n+1} \\ {n}\end{array}\right) =(r+n+1n),n是整数

6.关于上指标求和

∑ 0 ⩽ k ⩽ n ( k m ) = ( 0 m ) + ( 1 m ) + ⋯ + ( n m ) \sum_{0 \leqslant k \leqslant n} \left( \begin{array}{l}{k} \\ {m}\end{array}\right)=\left( \begin{array}{l}{0} \\ {m}\end{array}\right)+\left( \begin{array}{l}{1} \\ {m}\end{array}\right)+\cdots+\left( \begin{array}{l}{n} \\ {m}\end{array}\right) 0kn(km)=(0m)+(1m)++(nm) = ( n + 1 m + 1 ) =\left( \begin{array}{l}{n+1} \\ {m+1}\end{array}\right) =(n+1m+1),整数 m , n ⩾ 0 m, n \geqslant 0 m,n0

∑ k ≤ n ( m + k k ) = ∑ − m ≤ k ⩽ n ( m + k k ) = ∑ − m ≤ k ⩽ n ( m + k m ) = ∑ 0 ⩽ k ⩽ m + n ( k m ) = ( m + n + 1 m + 1 ) = ( m + n + 1 n ) \begin{aligned} \sum_{k \leq n} \left( \begin{array}{c}{m+k} \\ {k}\end{array}\right) &amp;=\sum_{-m \leq k \leqslant n} \left( \begin{array}{c}{m+k} \\ {k}\end{array}\right) \\ &amp;=\sum_{-m \leq k \leqslant n} \left( \begin{array}{c}{m+k} \\ {m}\end{array}\right) \\ &amp;=\sum_{0 \leqslant k \leqslant m+n} \left( \begin{array}{c}{k} \\ {m}\end{array}\right) \\ &amp;=\left( \begin{array}{c}{m+n+1} \\ {m+1}\end{array}\right)=\left( \begin{array}{c}{m+n+1} \\ {n}\end{array}\right) \end{aligned} kn(m+kk)=mkn(m+kk)=mkn(m+km)=0km+n(km)=(m+n+1m+1)=(m+n+1n)

7.上指标反转(5.14)

( r k ) = ( − 1 ) k ( k − r − 1 k ) \left( \begin{array}{l}{r} \\ {k}\end{array}\right)=(-1)^{k} \left( \begin{array}{c}{k-r-1} \\ {k}\end{array}\right) (rk)=(1)k(kr1k),k是整数

8. ( − 1 ) m ( − n − 1 m ) = ( − 1 ) n ( − m − 1 n ) (-1)^{m} \left( \begin{array}{c}{-n-1} \\ {m}\end{array}\right)=(-1)^{n} \left( \begin{array}{c}{-m-1} \\ {n}\end{array}\right) (1)m(n1m)=(1)n(m1n) = ( m + n n ) =\left( \begin{array}{c}{m+n} \\ {n}\end{array}\right) =(m+nn),整数 m , n ⩾ 0 m, n \geqslant 0 m,n0

利用上指标公式,也可以推导出下列式子(帕斯卡三角形一行的部分交替求和):
∑ k ≤ m ( r k ) ( − 1 ) k = ( r 0 ) − ( r 1 ) + ⋯ + ( − 1 ) m ( r m ) \sum_{k≤m} \left( \begin{array}{l}{r} \\ {k}\end{array}\right)(-1)^{k}=\left( \begin{array}{l}{r} \\ {0}\end{array}\right)-\left( \begin{array}{l}{r} \\ {1}\end{array}\right)+\cdots+(-1)^{m} \left( \begin{array}{l}{r} \\ {m}\end{array}\right) km(rk)(1)k=(r0)(r1)++(1)m(rm) = ( − 1 ) m ( r − 1 m ) , m 是 整 数 =(-1)^{m} \left( \begin{array}{c}{r-1} \\ {m}\end{array}\right), \quad m是整数 =(1)m(r1m),m

∑ k ⩽ m ( r k ) ( − 1 ) k = ∑ k ⩽ m ( k − r − 1 k ) = ( − r + m m ) = ( − 1 ) m ( r − 1 m ) \begin{aligned} \sum_{k \leqslant m} \left( \begin{array}{c}{r} \\ {k}\end{array}\right)(-1)^{k}=\sum_{k \leqslant m} \left( \begin{array}{c}{k-r-1} \\ {k}\end{array}\right) \\ =\left( \begin{array}{c}{-r+m} \\ {m}\end{array}\right) \\=(-1)^{m} \left( \begin{array}{c}{r-1} \\ {m}\end{array}\right) \end{aligned} km(rk)(1)k=km(kr1k)=(r+mm)=(1)m(r1m)

这篇关于具体数学之二项式系数1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/729695

相关文章

C# 预处理指令(# 指令)的具体使用

《C#预处理指令(#指令)的具体使用》本文主要介绍了C#预处理指令(#指令)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1、预处理指令的本质2、条件编译指令2.1 #define 和 #undef2.2 #if, #el

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

Java中接口和抽象类的异同以及具体的使用场景

《Java中接口和抽象类的异同以及具体的使用场景》文章主要介绍了Java中接口(Interface)和抽象类(AbstractClass)的区别和联系,包括相同点和不同点,以及它们在实际开发中的具体使... 目录一、接口和抽象类的 “相同点”二、接口和抽象类的 “核心区别”关键区别详解(避免踩坑)三、具体使

python pymodbus模块的具体使用

《pythonpymodbus模块的具体使用》pymodbus是一个Python实现的Modbus协议库,支持TCP和RTU通信模式,支持读写线圈、离散输入、保持寄存器等数据类型,具有一定的参考价值... 目录一、详解1、 基础概念2、核心功能3、安装与设置4、使用示例5、 高级特性6、注意事项二、代码示例

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

Java 中编码与解码的具体实现方法

《Java中编码与解码的具体实现方法》在Java中,字符编码与解码是处理数据的重要组成部分,正确的编码和解码可以确保字符数据在存储、传输、读取时不会出现乱码,本文将详细介绍Java中字符编码与解码的... 目录Java 中编码与解码的实现详解1. 什么是字符编码与解码?1.1 字符编码(Encoding)1

C#中SortedSet的具体使用

《C#中SortedSet的具体使用》SortedSet是.NETFramework4.0引入的一个泛型集合类,它实现了一个自动排序的集合,内部使用红黑树数据结构来维护元素的有序性,下面就来介绍一下如... 目录基础概念主要特性创建和初始化基本创建方式自定义比较器基本操作添加和删除元素查询操作范围查询集合运

C# Opacity 不透明度的具体使用

《C#Opacity不透明度的具体使用》本文主要介绍了C#Opacity不透明度的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录WinFormsOpacity以下是一些使用Opacity属性的示例:设置窗体的透明度:设置按钮的透