偏差-方差分解bias-variance decomposition

2024-02-17 12:38

本文主要是介绍偏差-方差分解bias-variance decomposition,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

方差、偏差的直观意义

方差维基百科定义:
Var ⁡ ( X ) = E [ ( X − μ ) 2 ] 其 中 μ = E ( X ) \operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right] 其中\mu=\mathrm{E}(X) Var(X)=E[(Xμ)2]μ=E(X)
在给定数据集中
方差
var ⁡ ( x ) = E D [ ( f ( x ; D ) − f ‾ ( x ) ) 2 ] \operatorname{var}(\boldsymbol{x})=\mathbb{E}_{D}\left[(f(\boldsymbol{x} ; D)-\overline{f}(\boldsymbol{x}))^{2}\right] var(x)=ED[(f(x;

这篇关于偏差-方差分解bias-variance decomposition的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/717782

相关文章

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩 目录 前言 一、特征值分解 二、应用特征值分解对图片进行压缩 三、矩阵的奇异值分解 四、应用奇异值分解对图片进行压缩 五、MATLAB仿真代码 前言         学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分

连分数因子分解法——C语言实现

参考网址:连分数分解法寻找整数的因子(Python)-CSDN博客 大数运算:C语言实现 大数运算 加减乘除模运算 超详细_64编程 加减乘除取模 复杂运算-CSDN博客 ‌连分数因子分解法‌是一种用于大整数因子分解的算法,它是计算数论中的一个重要方法。连分数因子分解法通过寻找x2≡y2 (mod p)x2≡y2 (mod p)的形式来分解N。具体来说,这种方法涉及到计算N的简单连分数展开,并

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积

【深度学习 误差计算】10分钟了解下均方差和交叉熵损失函数

常见的误差计算函数有均方差、交叉熵、KL 散度、Hinge Loss 函数等,其中均方差函数和交叉熵函数在深度学习中比较常见,均方差主要用于回归问题,交叉熵主要用于分类问题。下面我们来深刻理解下这两个概念。 1、均方差MSE。 预测值与真实值之差的平方和,再除以样本量。 均方差广泛应用在回归问题中,在分类问题中也可以应用均方差误差。 2、交叉熵 再介绍交叉熵损失函数之前,我们首先来介绍信息

《机器学习》 基于SVD的矩阵分解 推导、案例实现

目录 一、SVD奇异值分解 1、什么是SVD 2、SVD的应用         1)数据降维         2)推荐算法         3)自然语言处理 3、核心         1)什么是酉矩阵         2)什么是对角矩阵 4、分解过程 二、推导 1、如何求解这三个矩阵         1)已知:          2)根据酉矩阵的特点即可得出:

素数判定和分解质素数

1.素数判定   public static boolean isPrime(int n) {if (n <= 1) return false;if (n == 2) return true;if (n % 2 == 0) return false;int limit = (int)Math.sqrt(n) + 1;for (int i = 3; i <= limit; i += 2) {i

等式(数论/唯一分解定理)

链接: https://www.nowcoder.com/acm/contest/90/F 来源:牛客网 题目描述 给定n,求1/x + 1/y = 1/n (x<=y)的解数。(x、y、n均为正整数) 输入描述: 在第一行输入一个正整数T。接下来有T行,每行输入一个正整数n,请求出符合该方程要求的解数。(1<=n<=1e9) 输出描述: 输出符合该方程要求的解数。

【SGU】113. Nearly prime numbers 合数分解

传送门:【SGU】113. Nearly prime numbers 题目分析:O(sqrt(N))。。 代码如下: #include <cstdio>#include <cstring>#include <iostream>#include <algorithm>using namespace std ;#define rep( i , a , b ) for

【HDU】5958 New Signal Decomposition【离散对数下的FFT】

题目链接:【HDU】5958 New Signal Decomposition 在此先感谢小q对我的指导,没有q老师的帮助,估计永远也做不出来了。 首先我们考虑对这个式子做离散对数。令 g g为pp的某个原根,则有: bi=∑p−1j=0aj⋅r(i,j) \quad b_i=\sum_{j=0}^{p-1}a_j\cdot r(i,j) bi=∑p−1j=0aj⋅2sin32πi⋅j

基于Python的机器学习系列(23):奇异值分解(SVD)

在本篇中,我们将介绍如何利用奇异值分解(SVD)进行降维。SVD 是一种强大的矩阵分解方法,可以帮助我们提取数据中的重要特征,广泛应用于数据分析、图像处理等领域。 问题定义         在数据分析中,特别是当数据维度很高时,我们经常需要减少数据的维度以便于处理和可视化。奇异值分解(SVD)提供了一种有效的方法来实现这一目标。SVD 通过将原始数据矩阵分解成三个矩阵的乘积,从