等式(数论/唯一分解定理)

2024-09-05 21:38

本文主要是介绍等式(数论/唯一分解定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

链接: https://www.nowcoder.com/acm/contest/90/F
来源:牛客网

题目描述

给定n,求1/x + 1/y = 1/n (x<=y)的解数。(x、y、n均为正整数)


输入描述:

在第一行输入一个正整数T。
接下来有T行,每行输入一个正整数n,请求出符合该方程要求的解数。
(1<=n<=1e9)

输出描述:

输出符合该方程要求的解数。

首先明白一个定理:唯一分解定理(算数基本定理) 任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积N=P1a1P2a2P3a3......Pnan,这里P1<P2<P3......<Pn均为质数,其中指数ai是正整数。这样的分解称为 N 的标准分解式。证明可以去网上搜;
                接下来有几个重要的推论:(1)一个大于1的正整数N,如果它的标准分解式为
:
 
                        n=  p1^a1 * p2^a2 * p3^a3 * p4^a4 ......  * pk^ak
                         ,那么它的正因数个数为(1+a1)* (1+a2) * (1+a3) * (1+a4) * .......* (1+ak);
                  
(2)此外还可证明根号2是 无理数等等。
(3)证明 素数个数无限。
        在本题中我们用的是推论一:                   我们设 n+a=x, n+b=y,带入等式化简后得n^2=a*b且b>=a;
那么问题就转换成求n^2有多少对因子;
可以用短除法可以将n分解p1^a1 * p2^a2 * p3^a3 * p4^a4 ......  * pk^ak(pi为质数)的形式。
那么n^2=p1^(2*a1) * p2^(2*a2) * p3^(2^a3) * p4^(2*a4)  *..... * pk^(2*ak);
可以推出n^2所有的因子个数sum为(1+2*a1)* (1+2*a2) * (1+2*a3) * (1+2*a4) * .......* (1+2*ak);
所以结果为(sum+1)/2;     (sum+1是因为考虑到a==b==n的情况);代码如下:
#include<stdio.h>
int DecompositionFactor(int n);
/*
3
1
20180101
1000000000
输出1
5
181
*/ 
int main()
{int t;scanf("%d",&t);while(t--){int n;scanf("%d",&n) ;int sum = DecompositionFactor(n);    //求出n^2的所有因子的个数 printf("%d\n",(sum + 1) / 2);}return 0;
} 
int DecompositionFactor(int n)
{int sum = 1;for(int i = 2;i*i <= n;i++){int count = 0;while(n%i == 0){count++;n/=i;}sum *= (1 + 2 * count);}if(n != 1)sum *= (1 + 2 * 1);return sum;
}













这篇关于等式(数论/唯一分解定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140137

相关文章

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

数论ZOJ 2562

题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个。 分析:反素数定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4.如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数。 性质一:一个反素数的质因子必然是从2开始连续的质数。 性质二:p=2^t1*3^t2*5^t3*7

POJ2247数论

p = 2^a*3^b*5^c*7^d 求形如上式的第n小的数。 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.math.BigInteger;import java.u

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

CSP-J基础之数学基础 初等数论 一篇搞懂(二)

文章目录 前言算术基本定理简介什么是质数?举个简单例子:重要的结论:算术基本定理公式解释:举例: 算术基本定理的求法如何找出质因数:举个简单的例子: 重要的步骤:C++实现 同余举个例子:同余的性质简介1. 同余的自反性2. 同余的对称性3. 同余的传递性4. 同余的加法性质5. 同余的乘法性质 推论 总结 前言 在计算机科学和数学中,初等数论是一个重要的基础领域,涉及到整数

集群环境下为雪花算法生成全局唯一机器ID策略

雪花算法是生成数据id非常好的一种方式,机器id是雪花算法不可分割的一部分。但是对于集群应用,让不同的机器自动产生不同的机器id传统做法就是针对每一个机器进行单独配置,但这样做不利于集群水平扩展,且操作过程非常复杂,所以每一个机器在集群环境下是一个头疼的问题。现在借助spring+redis,给出一种策略,支持随意水平扩展,肥肠好用。 大致策略分为4步: 1.对机器ip进行hash,对某一个(大于

Java验证辛钦大数定理

本实验通过程序模拟采集大量的样本数据来验证辛钦大数定理。   实验环境: 本实验采用Java语言编程,开发环境为Eclipse,图像生成使用JFreeChart类。   一,验证辛钦大数定理 由辛钦大数定理描述为: 辛钦大数定理(弱大数定理)  设随机变量序列 X1, X2, … 相互独立,服从同一分布,具有数学期望E(Xi) = μ, i = 1, 2, …, 则对于任意正数ε ,

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩 目录 前言 一、特征值分解 二、应用特征值分解对图片进行压缩 三、矩阵的奇异值分解 四、应用奇异值分解对图片进行压缩 五、MATLAB仿真代码 前言         学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分

2014年暑假培训 - 数论

A银河上的星星 /**************************************************************     Problem: 1014     User: DoubleQ     Language: C++     Result: Accepted     Time:190 ms     Memor