深度学习方法(十一):卷积神经网络结构变化——Google Inception V1-V4,Xception(depthwise convolution)

本文主要是介绍深度学习方法(十一):卷积神经网络结构变化——Google Inception V1-V4,Xception(depthwise convolution),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。 
技术交流QQ群:433250724,欢迎对算法、机器学习技术感兴趣的同学加入。


上一篇讲了深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling,本篇讲一讲Google的Inception系列net,以及还是Google的Xception。(扯一下,Google的Researcher们还是给了很多很棒的idea的,希望读者朋友和我自己在了解paper之余,可以提出自己的想法,并实现。)

如果想看Xception,就直接拉到最后看,有手画示意图。

Inception V1-V4

Inception V1

V1是大家口头说的Googlenet,在之前的深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning有简单介绍,这里再凝练一下创新点:

这里写图片描述
图1

要想提高CNN的网络能力,比如分类准确率,一般的想法就是增大网络,比如Alexnet确实比以前早期Lenet大了很多,但是纯粹的增大网络——比如把每一层的channel数量翻倍——但是这样做有两个缺点——参数太多容易过拟合,网络计算量也会越来越大。

以下重点:目前很多工作证明,要想增强网络能力,可以:增加网络深度,增加网络宽度;但是为了减少过拟合,也要减少自由参数。因此,就自然而然有了这个第一版的Inception网络结构——同一层里面,有卷积1* 1, 3* 3,5* 5 不同的卷积模板,他们可以在不同size的感受野做特征提取,也算的上是一种混合模型了。因为Max Pooling本身也有特征提取的作用,而且和卷积不同,没有参数不会过拟合,也作为一个分支。但是直接这样做,整个网络计算量会较大,且层次并没有变深,因此,在3*3和5*5卷积前面先做1*1的卷积,降低input的channel数量,这样既使得网络变深,同时计算量反而小了;(在每一个卷积之后都有ReLU)

Inception V2-V3

V2和V3版本比较接近,就不绝对区分了,具体可以看[3]。讲一讲其中的创新点:

首先,用两层堆叠的3*3代替了一层5*5,我们可以看到,这样做参数量少了,计算量少了,但是层数变深了,效果也变好了:

这里写图片描述

用1*3和3*1卷积替代3*3卷积,计算量少了很多,深度变深,思路是一样的。(实际上是1*n和n*1替代n*n,n可以变)

这里写图片描述

放到Inception结构里,下面是原始的Inception

这里写图片描述

下面图5-6-7是改进版本:

这里写图片描述

这里写图片描述

这里写图片描述

总体的网络结构:

这里写图片描述

我们看到,Inception并不是全程都用,是在图像比较小了采用,并且,图5-6-7的结构是依次用的,他们适合不同size的图像。

Inception V4

v4研究了Inception模块结合Residual Connection能不能有改进?发现ResNet的结构可以极大地加速训练,同时性能也有提升,得到一个Inception-ResNet v2网络,同时还设计了一个更深更优化的Inception v4模型,能达到与Inception-ResNet v2相媲美的性能 [7]

Inception-resnet-v1 and Inception-ResNet v2都是用的这个结构图,区别在于下图的注释中,

这里写图片描述

这篇文章通篇就是各种微结构变化,我在这里贴也没什么意思,希望读者移步论文[4],找到对应的图号,看一下。

这里写图片描述

这里写图片描述

其实我也有疑惑,虽然paper总可以说出一些道道,结果也确实有一定提升,但是对于不同层设计了完全不同的微结构,这样会不会模式上太不统一了?有没有用更简洁统一的方式,达到一样的效果呢?我相信是有的,自我感觉Inception V1的模式很简单,Resnet的跳层结构也很简单,美,但是到了V4这里,结构变化太多,很难理解为什么是必须的呢?**

就好比我们以前做电影推荐比赛,最终获胜的结果往往是多模型混合,但是我个人还是最感兴趣那个最最有效果的单模型是什么样的。

Xception

非常新的一个工作[5],前面讲了那么多Inception网络,那么Inception网络的极限是什么呢?其中一个极限版本如下:

这里写图片描述

在1*1卷积之后,对每一个channel,做3*3的*1的独立卷积,然后再concat。认为每一个spatial conv对cross channel feature是没有关系的。

[5]作者提出了Depthwise Separable Convolution,或者简称Depthwise Convolution,是下面这个样子:先做channel-wise conv,然后再过1*1卷积,中间没有ReLU,最后有ReLU。

这里写图片描述

上面提到两种结构的区别,文中这一段写的很清楚:

这里写图片描述

整个网络结构:

这里写图片描述


OK,本篇到这里,只是作为一个记录和引导,让大家发现更多结构设计的idea。


参考资料

下面参考资料部分paper还带了test error 
[1] Going Deeper with Convolutions, 6.67% test error 
http://arxiv.org/abs/1409.4842 
[2] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 4.8% test error 
http://arxiv.org/abs/1502.03167 
[3] Rethinking the Inception Architecture for Computer Vision, 3.5% test error 
http://arxiv.org/abs/1512.00567 
[4] Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, 3.08% test error 
[5] Xception: Deep Learning with Depthwise Separable Convolutions 
[6] 深入浅出——网络模型中Inceptionv1到 v4 的作用与结构全解析 
[7] Inception in CNN 
[8] 论文笔记 | Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

这篇关于深度学习方法(十一):卷积神经网络结构变化——Google Inception V1-V4,Xception(depthwise convolution)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689990

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI