深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

本文主要是介绍深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。 
技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同学加入。


最近接下来几篇博文会回到神经网络结构的讨论上来,前面我在“深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning”一文中介绍了经典的CNN网络结构模型,这些可以说已经是家喻户晓的网络结构,在那一文结尾,我提到“是时候动一动卷积计算的形式了”,原因是很多工作证明了,在基本的CNN卷积计算模式之外,很多简化、扩展、变化都可以让卷积计算获得更多特性,比如参数减少,计算减少,效果提升等等。

接下来几篇文章会陆续介绍下面这些topic:

  1. Maxout Networks
  2. Network In Network
  3. Inception Net(Google)
  4. ResneXt
  5. Xception(depth-wise convolution)
  6. Spatial Transformer Networks

本文先介绍两个13,14年的工作:Maxout Networks,Network In Network。网上有不少资料,但是很多作者我相信自己都没有完全理解,在本文中我会尽可能描述清楚。本文重点在于Network In Network。本文针对论文和网络资料的整理,自己重新撰写,保证每一个初学者都可以看懂。

1、Maxout Network

坦白说Maxout本身并不能算卷积结构的变化,但是它提出了一个概念——线性变化+Max操作可以拟合任意的的凸函数,包括激活函数(如Relu);后面要介绍的NIN有关系,所以先介绍一下Maxout。

Maxout出现在ICML2013上,大神Goodfellow(GAN的提出人~)将maxout和dropout结合后,号称在MNIST, CIFAR-10, CIFAR-100, SVHN这4个数据上都取得了start-of-art的识别率。

从论文中可以看出,maxout其实是一种激或函数形式。通常情况下,如果激活函数采用sigmoid函数的话,在前向传播过程中,隐含层节点的输出表达式为:

这里写图片描述

一般的MLP就是这样情况。其中W一般是2维的,这里表示取出的是第i列(对应第i个输出节点),下标i前的省略号表示对应第i列中的所有行。如果是maxout激活函数,则其隐含层节点的输出表达式为:

这里写图片描述

这里写图片描述

这里的W是3维的,尺寸为d*m*k,其中d表示输入层节点的个数,m表示隐含层节点的个数,k表示每个隐含层节点展开k个中间节点,这k个中间节点都是线性输出的,而maxout的每个节点就是取这k个中间节点输出最大的那个值。参考一个日文的maxout ppt 中的一页ppt如下:

这里写图片描述

这张图的意识是说,紫圈中的隐藏节点展开成了5个黄色节点,取max。Maxout的拟合能力是非常强的,它可以拟合任意的的凸函数。从左往右,依次拟合出了ReLU,abs,二次曲线。

这里写图片描述

作者从数学的角度上也证明了这个结论,即只需2个maxout节点就可以拟合任意的凸函数了(相减),前提是中间节点的个数可以任意多,如下图所示,具体可以翻阅paper[1]。maxout的一个强假设是输出是位于输入空间的凸集中的….这个假设是否一定成立呢?虽然ReLU是Maxout的一个特例——实际上是得不到ReLU正好的情况的,我们是在学习这个非线性变换,用多个线性变换的组合+Max操作。

这里写图片描述

2、Network In Network

OK,上面介绍了Maxout[1],接下来重点介绍一下14年新加坡NUS颜水成老师组的Min Lin一个工作Network In Network ,说实话,不论是有心还是无意,本文的一些概念,包括1*1卷积,global average pooling都已经成为后来网络设计的标准结构,有独到的见解。

这里写图片描述
图1

先来看传统的卷积,图1左:

这里写图片描述

很多同学没有仔细看下标的含义,所以理解上模棱两可。xij表示的是一个卷积窗口的patch(一般是k_h*k_w*input_channel),k表示第k个kernel的index;激活函数是ReLU。并不是说只做一个kernel,而是指任意一个kernel。

再来看本文提出的Mlpconv Layer,也就是Network In Network,图1右。这里只是多加了一层全连接MLP层,什么意思呢?作者称之为“cascaded cross channel parametric pooling layer”,级联跨通道的带参数pooling层,目的是:

Each pooling layer performs weighted linear recombination on the input feature maps

这里写图片描述

看公式2就很清楚了,是第一层还是传统的卷积,在做一次卷积以后,对输出feature map的中的每一个像素点fij,其对应的所有channel又做了一次MLP,激活函数是ReLU。n表示第n层,而kn表示一个index,因为在第n层里面有很多kernel,和前面公式1是一个道理。所以,我们看下面整个NIN网络就很清楚了:

这里写图片描述

看第一个NIN,本来11*11*3*96(11*11的卷积kernel,输出map 96个)对于一个patch输出96个点,是输出feature map同一个像素的96个channel,但是现在多加了一层MLP,把这96个点做了一个全连接,又输出了96个点——很巧妙,这个新加的MLP层就等价于一个1 * 1 的卷积层,这样在神经网络结构设计的时候就非常方便了,只要在原来的卷积层后面加一个1*1的卷积层,而不改变输出的size。注意,每一个卷积层后面都会跟上ReLU。所以,相当于网络变深了,我理解其实这个变深是效果提升的主要因素。

举例解释

假设现在有一个3x3的输入patch,用x代表,卷积核大小也是3x3,向量w代表,输入channel是c1,输出channel是c2。下面照片是我自己手画的,比较简单,见谅:)

  • 对于一般的卷积层,直接x和w求卷积,得到1*1的1个点,有C2个kernel,得到1*1*c2;
  • Maxout,有k个的3x3的w(这里的k是自由设定的),分别卷积得到k个1x1的输出,然后对这k个输入求最大值,得到1个1*1的点,对每一个输出channel都要这样做;
  • NIN,有k个3x3的w(这里的k也是自由设定的),分别卷积得到k个1x1的输出,然后对它们都进行relu,然后再次对它们进行卷积,结果再relu。(这个过程,等效于一个小型的全连接网络)

这里写图片描述

这里建立了一个概念,全连接网络可以等价转换到1*1的卷积,这个idea在以后很多网络中都有用到,比如FCN[5]。

Global Average Pooling

在Googlenet网络中,也用到了Global Average Pooling,其实是受启发于Network In Network。Global Average Pooling一般用于放在网络的最后,用于替换全连接FC层,为什么要替换FC?因为在使用中,例如alexnet和vgg网络都在卷积和softmax之间串联了fc层,发现有一些缺点:

(1)参数量极大,有时候一个网络超过80~90%的参数量在最后的几层FC层中; 
(2)容易过拟合,很多CNN网络的过拟合主要来自于最后的fc层,因为参数太多,却没有合适的regularizer;过拟合导致模型的泛化能力变弱; 
(3)实际应用中非常重要的一点,paper中并没有提到:FC要求输入输出是fix的,也就是说图像必须按照给定大小,而实际中,图像有大有小,fc就很不方便;

作者提出了Global Average Pooling,做法很简单,是对每一个单独的feature map取全局average。要求输出的nodes和分类category数量一致,这样后面就可以直接接softmax了。

这里写图片描述

作者指出,Global Average Pooling的好处有:

  • 因为强行要求最后的feature map数量等于category数量,因此feature map就会被解析为categories confidence maps.
  • 没有参数,所以不会过拟合;
  • 对一个平面的计算,使得利用了空间信息,对于图像在空间中变化更鲁棒;

这里写图片描述

Dropout

最后稍微提一下dropout,这个是hinton在Improving neural networks by preventing co-adaptation of feature detectors[9]一文中提出的。方法是在训练时,一层隐藏层输出节点中,随机选p(比如0.5)的比例的节点输出为0,而与这些0节点相连的那些权重在本次迭代training中不被更新。Dropout是一个很强力的正则方法,为啥?因为有一部分权重没有被更新,减少了过拟合,而且每一次训练可以看做使用的网络model是不一样的,因此,最终全局就相当于是指数个model的混合结果,混合模型的泛化能力往往比较强。一般Dropout用于FC层,主要也是因为FC很容易过拟合。


OK,本篇就到这里,欢迎初学DL的同学分享,有问题可以在下面留言。


参考资料

[1] Maxout Networks, 2013 
[2] http://www.jianshu.com/p/96791a306ea5 
[3] Deep learning:四十五(maxout简单理解) 
[4] 论文笔记 《Maxout Networks》 && 《Network In Network》 
[5] Fully convolutional networks for semantic segmentation, 2015 
[6] http://blog.csdn.net/u010402786/article/details/50499864 
[7] 深度学习(二十六)Network In Network学习笔记 
[8] Network in Nerwork, 2014 
[9] Improving neural networks by preventing co-adaptation of feature detectors

这篇关于深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689989

相关文章

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S