maxout专题

深度学习-激活函数:饱和激活函数【Sigmoid、tanh】、非饱和激活函数【ReLU、Leaky ReLU、RReLU、PReLU、ELU、Maxout】

深度学习-激活函数:饱和激活函数【Sigmoid、tanh】、非饱和激活函数【ReLU、Leaky ReLU、RReLU、PReLU、ELU、Maxout】 一、激活函数的定义:二、激活函数的用途1、无激活函数的神经网络2、带激活函数的神经网络 三、饱和激活函数与非饱和激活函数1、饱和激活函数2、非饱和激活函数 四、激活函数的种类1、Sigmoid函数2、TanH函数3、ReLU(Recti

【DL经典回顾】激活函数大汇总(八)(Maxout Softmin附代码和详细公式)

激活函数大汇总(八)(Maxout & Softmin附代码和详细公式) 更多激活函数见激活函数大汇总列表 一、引言 欢迎来到我们深入探索神经网络核心组成部分——激活函数的系列博客。在人工智能的世界里,激活函数扮演着不可或缺的角色,它们决定着神经元的输出,并且影响着网络的学习能力与表现力。鉴于激活函数的重要性和多样性,我们将通过几篇文章的形式,本篇详细介绍两种激活函数,旨在帮助读者深入了解各

深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。  技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同学加入。 最近接下来几篇博文会回到神经网络结构的讨论上来,前面我在“深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning”一文中介绍了经

【激活函数】Softmax 和 Maxout 激活函数

已经有前辈撰写关于讲解这两个激活函数并且通俗易懂的文章了,本人在此就不赘述,链接奉上,内容值得细细品读。 Softmax 激活函数: 深度学习之Softmax回归 - 知乎 (zhihu.com) Maxout 激活函数: 深度学习(二十三)Maxout网络学习-CSDN博客

maxout简单理解

maxout出现在ICML2013上,作者Goodfellow将maxout和dropout结合后,号称在MNIST, CIFAR-10, CIFAR-100, SVHN这4个数据上都取得了start-of-art的识别率。   从论文中可以看出,maxout其实一种激发函数形式。通常情况下,如果激发函数采用sigmoid函数的话,在前向传播过程中,隐含层节点的输出表达式为:       其

基于muist数据集的maxout网络实现分类 ----代码分享

运行环境:windows,tensorflow - gpu-1.13.1 #---------------------------------理解mnist数据集#导入mnist数据集from tensorflow.examples.tutorials.mnist import input_data #从网上下载mnist数据集的模块mnist = input_data.read_data