[python]基于Ultra-Fast-Lane-Detection-v2车道线实时检测onnx部署

2024-02-03 12:20

本文主要是介绍[python]基于Ultra-Fast-Lane-Detection-v2车道线实时检测onnx部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【论文地址】

https://arxiv.org/pdf/2206.07389.pdf

【框架地址】

https://github.com/cfzd/Ultra-Fast-Lane-Detection-v2

【框架介绍】

Ultra-Fast-Lane-Detection-v2(UFL-D-v2)算法是一种高效的车道线检测算法,它旨在快速准确地识别和定位道路上的车道线。UFL-D-v2算法结合了深度学习和计算机视觉技术,通过训练神经网络模型来识别车道线。

该算法的核心是使用卷积神经网络(CNN)进行特征提取和分类。首先,算法对输入的图像进行预处理,包括灰度化、去噪、缩放等操作,以提高图像质量和减少计算量。然后,将预处理后的图像输入到CNN模型中进行特征提取,CNN模型通过训练学习到车道线的特征表示。

在特征提取的基础上,UFL-D-v2算法采用了一种称为“边缘连接”的方法,将相邻像素点连接成线段,形成候选车道线。这些候选车道线经过一系列的筛选和过滤操作,排除掉不符合车道线特征的线段,最终得到准确的车道线。

UFL-D-v2算法具有以下几个优点:

  1. 高效性:算法采用了卷积神经网络进行特征提取,大大减少了计算量,提高了检测速度。
  2. 准确性:通过训练神经网络模型,算法能够准确识别车道线,降低了误检率。
  3. 适应性:算法对不同的道路环境和光照条件具有较强的适应性,能够有效地识别车道线。
  4. 可扩展性:算法可以方便地扩展到其他领域,如自动驾驶、智能交通等。

总的来说,UFL-D-v2算法是一种高效、准确的车道线检测算法,它可以为自动驾驶和智能交通领域提供重要的技术支持。

【效果展示】

【测试环境】

anaconda3+python3.8
opencv-python==4.7.0.68
onnxruntime==1.15.1

【使用说明】

注意:视频是我随便找的因为不同场景效果不一样,可以自己拍摄一个视频尝试
安装好环境后main_opencv使用纯opencv实现,main_onnxruntime是使用onnxruntime推理实现
测试图片:
python main_opencv_image.py或者python main_onnxruntime_image.py
测试视频:
python main_opencv_video.py或者python main_onnxruntime_video.py
【源码下载】

这篇关于[python]基于Ultra-Fast-Lane-Detection-v2车道线实时检测onnx部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/674134

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该