实时专题

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

三.海量数据实时分析-FlinkCDC实现Mysql数据同步到Doris

FlinkCDC 同步Mysql到Doris 参考:https://nightlies.apache.org/flink/flink-cdc-docs-release-3.0/zh/docs/get-started/quickstart/mysql-to-doris/ 1.安装Flink 下载 Flink 1.18.0,下载后把压缩包上传到服务器,使用tar -zxvf flink-xxx-

【IPV6从入门到起飞】4-RTMP推流,ffmpeg拉流,纯HTML网页HLS实时直播

【IPV6从入门到起飞】4-RTMP推流,ffmpeg拉流,纯HTML网页HLS实时直播 1 背景2 搭建rtmp服务器2.1 nginx方案搭建2.1.1 windows 配置2.1.2 linux 配置 2.2 Docker方案搭建2.2.1 docker 下载2.2.2 宝塔软件商店下载 3 rtmp推流3.1 EV录屏推流3.2 OBS Studio推流 4 ffmpeg拉流转格式

Ubuntu 标题栏实时显示网速CPU内存

1.用 wget 下载 indicator-sysmonitor,终端执行命令: $ wget -c https://launchpad.net/indicator-sysmonitor/trunk/4.0/+download/indicator-sysmonitor_0.4.3_all.deb2.安装依赖: sudo apt-get install python python-psu

第一款实时网络游戏的开发历程全解

“我的兴趣是创建世界,而不是生活在别人创建的世界里。我希望游戏世界能让人们能跳出现实世界的局限,去尝试新的身份……不是要脱胎换骨,而是让他们找到自己真正的归属”。所以他创造了第一个网络世界。      特鲁布肖所开发的MUD1(为区别这款游戏与MUD这一游戏类型,后文游戏名统一为MUD1)依然是一个纯文字的世界,没有任何图片,但是不同计算机前的玩家可以在游戏里共同冒险、交流。   与以往具有

CVPR 2024最新论文分享┆YOLO-World:一种实时开放词汇目标检测方法

论文分享简介 本推文主要介绍了CVPR 2024上的一篇论文《YOLO-World: Real-Time Open-Vocabulary Object Detection》,论文的第一作者为Tianheng Cheng和Lin Song,该论文提出了一种开放词汇目标检测的新方法,名为YOLO-World。论文通过引入视觉-语言建模和大规模预训练解决了传统YOLO检测器在固定词汇检测中的局限性。论

el-table 封装表格(完整代码-实时更新)

最新更新时间: 2024年9月6号 1. 添加行内编辑、表头搜索 <template><!-- 简单表格、多层表头、页码、没有合并列行 --><div class="maintenPublictable"element-loading-background="rgba(255,255,255,0.5)"><!--cell-style 改变某一列行的背景色 --><!-- tree-props

三文带你轻松上手鸿蒙的AI语音01-实时语音识别

三文带你轻松上手鸿蒙的AI语音01-实时语音识别 前言 HarmonyOSNext中集成了强大的AI功能。Core Speech Kit(基础语音服务)是它提供的众多AI功能中的一种。 Core Speech Kit(基础语音服务)集成了语音类基础AI能力,包括文本转语音(TextToSpeech)及语音识别(SpeechRecognizer)能 力,便于用户与设备进行互动,实现将实时输入

使用 Apache Flink 开发实时ETL

来源:薄荷脑的博客 作者:薄荷脑 大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! By  大数据技术与架构 场景描述:本文将介绍如何使用 Flink 开发实时 ETL 程序,并介绍 Flink 是如何保证

Flink实时计算指标对数方案

来源:大数据技术与架构读者投稿 作者:诸葛子房 点击右侧关注,大数据开发领域最强公众号! 点击右侧关注,暴走大数据! By  大数据技术与架构 作者简介: 诸葛子房 ,目前就职于一线互联网公司,从事大数据相关工作,了解互联网、大数据相关内容,一直在学习的路上 。

Structured Streaming | Apache Spark中处理实时数据的声明式API

关于Spark的相关文章在这里: 《Spark面对OOM问题的解决方法及优化总结》 《Spark 动态资源分配(Dynamic Resource Allocation) 解析》 《Apache Spark在海致大数据平台中的优化实践》 《Spark/Flink广播实现作业配置动态更新》 《Spark SQL读数据库时不支持某些数据类型的问题》 《阿里云Spark Shuffle的优化》 《Spa

菜鸟供应链实时数据技术架构的演进

大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! 本文来自阿里巴巴的缘桥的分享,讲解了菜鸟实时架构的演进过程以及Flink在其中扮演的作用。 我们之前分享过几篇数仓的文章,如下: 《漫谈数仓五重奏》 《用Flink取代Spark Streaming!知乎实时数仓架构演进》 《Flink实时数仓|美团点评实战》 《OneData建设探索之路

趣头条实战 | 基于Flink+ClickHouse构建实时数据平台

大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! 如果你对ClickHouse不了解,请参考: 《你需要懂一点ClickHouse的基础知识》 《战斗民族开源 | ClickHouse万亿数据双中心的设计与实践》 本文是趣头条使用Flink+ClickHouse构建实时数据平台的实践。 欢迎

Flink使用Broadcast State实现流处理配置实时更新

大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! 本文作者时延军发表在http://shiyanjun.cn,如果你也在使用Broadcast State,那么可以参考一下。 Broadcast State是Flink支持的一种Operator State。使用Broadcast State,可以在Flink程序的一个Stream中输入数

打通实时流处理log4j-flume-kafka-structured-streaming

大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! 模拟产生log4j日志 jar包依赖 pom.xml 12345678910111213<dependency><groupId>log4j</groupId><artifactId>log4j</artifactId></dependency><depe

实时数仓链路分享:kafka =SparkStreaming=kudu集成kerberos

点击上方蓝色字体,选择“设为星标” 回复”资源“获取更多资源 大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! 本文档主要介绍在cdh集成kerberos情况下,sparkstreaming怎么消费kafka数据,并存储在kudu里面 假设kafka集成kerberos假设kudu集成kerberos假设用非root用户操作spark基

网站日志实时分析之Flink处理实时热门和PVUV统计

点击上方蓝色字体,选择“设为星标” 回复”资源“获取更多资源 大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! 实时热门统计 操作步骤: 先从Kafka读取消费数据使用map算子对数据进行预处理过滤数据,只留住pv数据使用timewindow,每隔10秒创建一个20秒的window然后将窗口自定义预聚合,并且兹定于窗口函数,按指定输入输

大话实时数据平台设计(上)

点击上方蓝色字体,选择“设为星标” 回复”资源“获取更多资源 大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! 一、相关概念背景 1从现代数仓架构角度看实时数据平台 现代数仓由传统数仓发展而来,对比传统数仓,现代数仓既有与其相同之处,也有诸多发展点。首先我们看一下传统数仓(图1)和现代数仓(图2)的模块架构: 图1 传统数仓 图2

大话实时数据平台设计(下)

在上篇点击上方蓝色字体,选择“设为星标” 回复”资源“获取更多资源 大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! 实时数据平台(RTDP,Real-time Data Platform)是一个重要且常见的大数据基础设施平台。在上篇中,我们从现代数仓架构角度和典型数据处理角度介绍了RTDP,并探讨了RTDP的整体设计架构。 本文作为下

ES实现百亿级数据实时分析实战案例

点击上方蓝色字体,选择“设为星标” 回复”资源“获取更多资源 背景 我们小组前段时间接到一个需求,希望能够按照小时为单位,看到每个实验中各种特征(单个或组合)的覆盖率、正样本占比、负样本占比。我简单解释一下这三种指标的定义: 覆盖率:所有样本中出现某一特征的样本的比例正样本占比:所有出现该特征的样本中,正样本的比例负样本占比:所有出现该特征的样本中,负样本的比例 光看这三个指标,大家可能会觉得

胖哥的经验 | 一款普适的实时数仓架构设计

什么?胖哥的经验,没错这是来自我们大数据成神之路小伙伴的经验。有什么问题,欢迎大家加群讨论,公众号回复【加群】。 一、实时数仓的架构背景 首先我们来聊一聊实时数仓是怎么诞生的,在离线数仓的时候数据是T+1的也就是隔一天才能看到昨天的数据,这种形式持续了很久的时间,但是有些场景真的只有实时的数据才有用武之地。例如推荐、风控、考核等。那么这个时候实时指标也就应运而生,在最开始的时候,采用flink\

直播美颜SDK与主播美颜工具:实时美颜技术的深度解析

本篇文章,笔者将深入解析直播美颜SDK的核心技术与主播美颜工具的开发原理。 一、什么是直播美颜SDK? 通过集成美颜SDK,开发者可以在直播应用中快速实现脸部优化、滤镜添加、皮肤调整等功能,帮助主播在直播过程中实时呈现最佳状态。不同于传统的后期处理,直播美颜SDK依靠强大的实时处理能力,能够在视频采集的同时对图像进行优化处理,达到实时美颜的效果。 二、直播美颜SDK的核心技术 1.人脸

【硬刚大数据】Flink在实时在实时计算平台和实时数仓中的企业级应用小结

欢迎关注博客主页:https://blog.csdn.net/u013411339 欢迎点赞、收藏、留言 ,欢迎留言交流!本文由【王知无】原创,首发于 CSDN博客!本文首发CSDN论坛,未经过官方和本人允许,严禁转载! 本文是对《【硬刚大数据之学习路线篇】从零到大数据专家的学习指南(全面升级版)》的面试部分补充。 大数据领域自 2010 年开始,以 Hadoop、Hive 为代

AliExpress基于Flink的广告实时数仓建设

点击上方蓝色字体,选择“设为星标” 回复"面试"获取更多惊喜 大数据面试提升私教训练营上线 Hi,我是王知无,一个大数据领域的原创作者。  放心关注我,获取更多行业的一手消息。 摘要:实时数仓以提供低延时数据指标为目的供业务实时决策,本文主要介绍基于Flink的广告实时数仓建设,主要包括以下内容: 1. 建设背景 2. 技术架构 3. 数仓架构 4. 实时OLAP 5. 实时保障 6. 未

网际风(Nezip)实时行情数据调用代码示例

PHP读取代码示例   <?php $cookie_file = dirname(__FILE__)."/cookie_".md5(basename(__FILE__)).".txt"; // 设置Cookie文件保存路径及文件名 function vget($url){ // 模拟获取内容函数     $curl = curl_init(); // 启动一个CURL会话 curl_s

解读:以RTC为基,AI为脑的“超拟人”AI实时互动解决方案

我们打造了一款满足想象与应用的智能体——AI实时互动。 谈谈AI智能体 当AI变得足够聪明时,用户与AI的交互将变得真实自然。于是,构建高拟真AI与用户的实时交互,已经成为企业提升数智化生产力的新思路。 在这个交互过程中,存在一个极具活力的对象,就是智能体(AIAgent)。 顾名思义,“智能体”利用人工智能,能够基于内部状态、感知到的信息或外部输入,来做出决策并执行动作。它具有