ES实现百亿级数据实时分析实战案例

2024-09-06 20:08

本文主要是介绍ES实现百亿级数据实时分析实战案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

背景

我们小组前段时间接到一个需求,希望能够按照小时为单位,看到每个实验中各种特征(单个或组合)的覆盖率、正样本占比、负样本占比。我简单解释一下这三种指标的定义:

  • 覆盖率:所有样本中出现某一特征的样本的比例

  • 正样本占比:所有出现该特征的样本中,正样本的比例

  • 负样本占比:所有出现该特征的样本中,负样本的比例

光看这三个指标,大家可能会觉得这个需求很简单,无非就是一个简单的筛选、聚合而已。

如果真的这么简单,我也没必要写这篇文章单独记录了。问题的关键就在于,每小时有将近1亿的数据量,而我们需要保存7天的数据,数据总量预计超过了100亿

技术方案

在了解清楚需求后,我们小组马上对技术方案展开讨论,讨论过程中出现了3种方案:

  • 第一种:用Spark流式计算,计算每一种可能单个或组合特征的相关指标

  • 第二种:收到客户端请求后,遍历HDFS中相关数据,进行离线计算

  • 第三种:将数据按照实验+小时分索引存入ES,收到客户端请求后,实时计算返回

首先,第一种方案直接被diss,原因是一个实验一般会出现几百、上千个特征,而这些特征的组合何止几亿种,全部计算的话,可行性暂且不论,光是对资源的消耗就无法承受。

第二种方案,虽然技术上是可行的,但离线计算所需时间较长,对用户来说,体验并不理想。并且,为了计算目标1%的数据而要遍历所有数据,对资源也存在很大浪费。

第三种方案,将数据按照实验+小时分索引后,可以将每个索引包含的数据量降到1000万以下,再借助ES在查询、聚合方面高效的能力,应该可以实现秒级响应,并且用户体验也会非常好。

技术方案由此确定。

技术架构

1.用Spark从Kafka中接入原始数据,之后对数据进行解析,转换成我们的目标格式

2.将数据按照实验+小时分索引存入ES中

3.接受到用户请求后,将请求按照实验+特征+小时组合,创建多个异步任务,由这些异步任务并行从ES中过滤并聚合相关数据,得到结果

4.将异步任务的结果进行合并,返回给前端进行展示

代码实现

异步任务

// 启动并行任务final Map<String,List<Future<GetCoverageTask.Result>>> futures = Maps.newHashMap();for(String metric : metrics) { // 遍历要计算的指标final SampleRatio sampleRatio = getSampleRatio(metric);for (String exptId : expts) { // 遍历目标实验列表for (String id : features) { // 遍历要分析的特征final String name = getMetricsName(exptId, sampleRatio, id);final List<Future<GetCoverageTask.Result>> resultList = Lists.newArrayList();for (Date hour : coveredHours) { // 将时间按照小时进行拆分final String fieldName = getFieldName(isFect ? Constants.FACET_COLLECT : Constants.FEATURE_COLLECT, id);final GetCoverageTask task = new GetCoverageTask(exptId, fieldName, sampleRatio, hour);// 启动并行任务final Future<GetCoverageTask.Result> future = TaskExecutor.submit(task);resultList.add(future);}futures.put(name, resultList);}}}final QueryRes queryRes = new QueryRes();final Iterator<Map.Entry<String, List<Future<GetCoverageTask.Result>>>> it = futures.entrySet().iterator();while (it.hasNext()){// 省略结果处理流程}

指标计算

// 1\. 对文档进行聚合运行,分别得到基础文档的数量,以及目标文档数量final AggregationBuilder[] agg = getAggregationBuilder(sampleRatio, fieldName);final SearchSourceBuilder searchBuilder = new SearchSourceBuilder();searchBuilder.aggregation(agg[0]).aggregation(agg[1]).size(0);// 2\. 得到覆盖率final String indexName = getIndexName(exptId, hour);final Search search = new Search.Builder(searchBuilder.toString()).addIndex(indexName).addType(getType()).build();final SearchResult result = jestClient.execute(search);if(result.getResponseCode() != HttpUtils.STATUS_CODE_200){// 请求出错log.warn(result.getErrorMessage());return 0f;}final MetricAggregation aggregations = result.getAggregations();// 3\. 解析结果final long dividend ;if(SampleRatio.ALL == sampleRatio){dividend = aggregations.getValueCountAggregation(Constants.DIVIDEND).getValueCount();}else {dividend = aggregations.getFilterAggregation(Constants.DIVIDEND).getCount();}// 防止出现被除数为0时程序异常if(dividend <= 0){return 0f;}long divisor = aggregations.getFilterAggregation(Constants.DIVISOR).getCount();return divisor / (float)dividend;

聚合

int label = 0;final ExistsQueryBuilder existsQuery = QueryBuilders.existsQuery(fieldName);// 包含指定特征的正样本数量final BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();final List<QueryBuilder> must = boolQuery.must();// 计算样本数量TermQueryBuilder labelQuery = null;if(SampleRatio.POSITIVE == sampleRatio) {// 计算正样本数量label = 1;labelQuery = QueryBuilders.termQuery(Constants.LABEL, label);must.add(labelQuery);}else if(SampleRatio.NEGATIVE == sampleRatio) {// 计算负样本数量labelQuery = QueryBuilders.termQuery(Constants.LABEL, label);must.add(labelQuery);}must.add(existsQuery);final ValueCountAggregationBuilder existsCountAgg = AggregationBuilders.count(sampleRatio.getField());existsCountAgg.field(fieldName);final FilterAggregationBuilder filterAgg = AggregationBuilders.filter(aggName, boolQuery);filterAgg.subAggregation(existsCountAgg);return filterAgg;
上线效果

上线后表现完全满足预期,平均请求耗时在3秒左右,用户体验良好。感谢各位小伙伴的辛苦付出~~

下图是ES中部分索引的信息:

突破性能瓶颈!ElasticSearch百亿级数据检索优化案例

ElasticSearch读写底层原理及性能调优

一文俯瞰Elasticsearch核心原理

文章不错?点个【在看】吧! ????

这篇关于ES实现百亿级数据实时分析实战案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142996

相关文章

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa