ES实现百亿级数据实时分析实战案例

2024-09-06 20:08

本文主要是介绍ES实现百亿级数据实时分析实战案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

背景

我们小组前段时间接到一个需求,希望能够按照小时为单位,看到每个实验中各种特征(单个或组合)的覆盖率、正样本占比、负样本占比。我简单解释一下这三种指标的定义:

  • 覆盖率:所有样本中出现某一特征的样本的比例

  • 正样本占比:所有出现该特征的样本中,正样本的比例

  • 负样本占比:所有出现该特征的样本中,负样本的比例

光看这三个指标,大家可能会觉得这个需求很简单,无非就是一个简单的筛选、聚合而已。

如果真的这么简单,我也没必要写这篇文章单独记录了。问题的关键就在于,每小时有将近1亿的数据量,而我们需要保存7天的数据,数据总量预计超过了100亿

技术方案

在了解清楚需求后,我们小组马上对技术方案展开讨论,讨论过程中出现了3种方案:

  • 第一种:用Spark流式计算,计算每一种可能单个或组合特征的相关指标

  • 第二种:收到客户端请求后,遍历HDFS中相关数据,进行离线计算

  • 第三种:将数据按照实验+小时分索引存入ES,收到客户端请求后,实时计算返回

首先,第一种方案直接被diss,原因是一个实验一般会出现几百、上千个特征,而这些特征的组合何止几亿种,全部计算的话,可行性暂且不论,光是对资源的消耗就无法承受。

第二种方案,虽然技术上是可行的,但离线计算所需时间较长,对用户来说,体验并不理想。并且,为了计算目标1%的数据而要遍历所有数据,对资源也存在很大浪费。

第三种方案,将数据按照实验+小时分索引后,可以将每个索引包含的数据量降到1000万以下,再借助ES在查询、聚合方面高效的能力,应该可以实现秒级响应,并且用户体验也会非常好。

技术方案由此确定。

技术架构

1.用Spark从Kafka中接入原始数据,之后对数据进行解析,转换成我们的目标格式

2.将数据按照实验+小时分索引存入ES中

3.接受到用户请求后,将请求按照实验+特征+小时组合,创建多个异步任务,由这些异步任务并行从ES中过滤并聚合相关数据,得到结果

4.将异步任务的结果进行合并,返回给前端进行展示

代码实现

异步任务

// 启动并行任务final Map<String,List<Future<GetCoverageTask.Result>>> futures = Maps.newHashMap();for(String metric : metrics) { // 遍历要计算的指标final SampleRatio sampleRatio = getSampleRatio(metric);for (String exptId : expts) { // 遍历目标实验列表for (String id : features) { // 遍历要分析的特征final String name = getMetricsName(exptId, sampleRatio, id);final List<Future<GetCoverageTask.Result>> resultList = Lists.newArrayList();for (Date hour : coveredHours) { // 将时间按照小时进行拆分final String fieldName = getFieldName(isFect ? Constants.FACET_COLLECT : Constants.FEATURE_COLLECT, id);final GetCoverageTask task = new GetCoverageTask(exptId, fieldName, sampleRatio, hour);// 启动并行任务final Future<GetCoverageTask.Result> future = TaskExecutor.submit(task);resultList.add(future);}futures.put(name, resultList);}}}final QueryRes queryRes = new QueryRes();final Iterator<Map.Entry<String, List<Future<GetCoverageTask.Result>>>> it = futures.entrySet().iterator();while (it.hasNext()){// 省略结果处理流程}

指标计算

// 1\. 对文档进行聚合运行,分别得到基础文档的数量,以及目标文档数量final AggregationBuilder[] agg = getAggregationBuilder(sampleRatio, fieldName);final SearchSourceBuilder searchBuilder = new SearchSourceBuilder();searchBuilder.aggregation(agg[0]).aggregation(agg[1]).size(0);// 2\. 得到覆盖率final String indexName = getIndexName(exptId, hour);final Search search = new Search.Builder(searchBuilder.toString()).addIndex(indexName).addType(getType()).build();final SearchResult result = jestClient.execute(search);if(result.getResponseCode() != HttpUtils.STATUS_CODE_200){// 请求出错log.warn(result.getErrorMessage());return 0f;}final MetricAggregation aggregations = result.getAggregations();// 3\. 解析结果final long dividend ;if(SampleRatio.ALL == sampleRatio){dividend = aggregations.getValueCountAggregation(Constants.DIVIDEND).getValueCount();}else {dividend = aggregations.getFilterAggregation(Constants.DIVIDEND).getCount();}// 防止出现被除数为0时程序异常if(dividend <= 0){return 0f;}long divisor = aggregations.getFilterAggregation(Constants.DIVISOR).getCount();return divisor / (float)dividend;

聚合

int label = 0;final ExistsQueryBuilder existsQuery = QueryBuilders.existsQuery(fieldName);// 包含指定特征的正样本数量final BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();final List<QueryBuilder> must = boolQuery.must();// 计算样本数量TermQueryBuilder labelQuery = null;if(SampleRatio.POSITIVE == sampleRatio) {// 计算正样本数量label = 1;labelQuery = QueryBuilders.termQuery(Constants.LABEL, label);must.add(labelQuery);}else if(SampleRatio.NEGATIVE == sampleRatio) {// 计算负样本数量labelQuery = QueryBuilders.termQuery(Constants.LABEL, label);must.add(labelQuery);}must.add(existsQuery);final ValueCountAggregationBuilder existsCountAgg = AggregationBuilders.count(sampleRatio.getField());existsCountAgg.field(fieldName);final FilterAggregationBuilder filterAgg = AggregationBuilders.filter(aggName, boolQuery);filterAgg.subAggregation(existsCountAgg);return filterAgg;
上线效果

上线后表现完全满足预期,平均请求耗时在3秒左右,用户体验良好。感谢各位小伙伴的辛苦付出~~

下图是ES中部分索引的信息:

突破性能瓶颈!ElasticSearch百亿级数据检索优化案例

ElasticSearch读写底层原理及性能调优

一文俯瞰Elasticsearch核心原理

文章不错?点个【在看】吧! ????

这篇关于ES实现百亿级数据实时分析实战案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142996

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi