三.海量数据实时分析-FlinkCDC实现Mysql数据同步到Doris

本文主要是介绍三.海量数据实时分析-FlinkCDC实现Mysql数据同步到Doris,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FlinkCDC 同步Mysql到Doris

参考:https://nightlies.apache.org/flink/flink-cdc-docs-release-3.0/zh/docs/get-started/quickstart/mysql-to-doris/

1.安装Flink

下载 Flink 1.18.0,下载后把压缩包上传到服务器,使用tar -zxvf flink-xxx-bin-scala_2.12.tgz 解压后得到 flink-1.18.0 目录

cd flink-1.18.1

然后需要配置FLINK_HOME ,执行vi /etc/profile,增加如下内容

export FLINK_HOME=/root/flink/flink-1.18.1 #你的安装目录
export PATH=$PATH:$FLINK_HOME/bin

执行:source /etc/profile 让其生效,然后通过在 conf/flink-conf.yaml 配置文件追加下列参数开启 checkpoint,每隔 3 秒做一次 checkpoint。

execution.checkpointing.interval: 3000

使用下面的命令启动 Flink 集群,

./bin/start-cluster.sh

启动成功的话,可以在 http://localhost:8081/访问到 Flink Web UI,多次执行 start-cluster.sh 可以拉起多个 TaskManager。如下所示:

在这里插入图片描述
访问之前记得开放防火墙端口

firewall-cmd --zone=public --add-port=8081/tcp --permanent;
firewall-cmd --zone=public --add-port=8030/tcp --permanent;
firewall-cmd --zone=public --add-port=8040/tcp --permanent;
firewall-cmd --zone=public --add-port=9030/tcp --permanent;
firewall-cmd --reload ;

2.准备同步的数据库

准备好Mysql数据库,创建数据库 app_db 和表 orders,products,shipments,并插入数据

-- 创建数据库
CREATE DATABASE app_db;USE app_db;-- 创建 orders 表
CREATE TABLE `orders` (
`id` INT NOT NULL,
`price` DECIMAL(10,2) NOT NULL,
PRIMARY KEY (`id`)
);-- 插入数据
INSERT INTO `orders` (`id`, `price`) VALUES (1, 4.00);
INSERT INTO `orders` (`id`, `price`) VALUES (2, 100.00);-- 创建 shipments 表
CREATE TABLE `shipments` (
`id` INT NOT NULL,
`city` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`)
);-- 插入数据
INSERT INTO `shipments` (`id`, `city`) VALUES (1, 'beijing');
INSERT INTO `shipments` (`id`, `city`) VALUES (2, 'xian');-- 创建 products 表
CREATE TABLE `products` (
`id` INT NOT NULL,
`product` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`)
);-- 插入数据
INSERT INTO `products` (`id`, `product`) VALUES (1, 'Beer');
INSERT INTO `products` (`id`, `product`) VALUES (2, 'Cap');
INSERT INTO `products` (`id`, `product`) VALUES (3, 'Peanut');

给doris创建数据库,通过 Web UI 创建 app_db 数据库 :create database app_db;

在这里插入图片描述

3.安装FlinkCDC

下载 flink cdc-3.0.0 的二进制压缩包 flink-cdc-3.0.0-bin.tar.gz,并解压得到目录 flink cdc-3.0.0 ':. flink-cdc-3.0.0 下会包含 bin、lib、log、conf 四个目录

在这里插入图片描述

然后把下面2个 connector 包,并且移动到 lib 目录下

  • MySQL pipeline connector 3.0.0 : mysql的驱动
  • Apache Doris pipeline connector 3.0.0 : doris的驱动

在这里插入图片描述
编写任务配置 yaml 文件 文件可以放到config目录下。 下面给出了一个整库同步的示例文件 mysql-to-doris.yaml,

################################################################################
# Description: Sync MySQL all tables to Doris
################################################################################
source:type: mysqlhostname: 192.168.220.253port: 3307username: rootpassword: 123456tables: app_db.\.*server-id: 5400-5404server-time-zone: UTCsink:type: dorisfenodes: 127.0.0.1:8030username: rootpassword: 123456table.create.properties.light_schema_change: truetable.create.properties.replication_num: 1pipeline:name: Sync MySQL Database to Dorisparallelism: 1

其中: source 中的 tables: app_db..* 通过正则匹配同步 app_db 下的所有表。 sink 添加table.create.properties.replication_num :1 参数是由于 只有一个 Doris BE 节点。

最后,进入到 flink-cdc-3.0.0 目录,通过命令行提交任务到 Flink Standalone cluster :bash bin/flink-cdc.sh mysql-to-doris.yaml

[root@localhost flink-cdc-3.0.0]# bash bin/flink-cdc.sh conf/mysql-to-doris.yaml 
Pipeline has been submitted to cluster.
Job ID: 13e2925fd46e5840243c9523cd093e11
Job Description: Sync MySQL Database to Doris

执行之后查看flink的控制台界面 : 访问 8081端口
在这里插入图片描述
点击 Job Name 进入任务,可以看到同步的情况,还可以查看任务日志如下
在这里插入图片描述
登录doris的控制台,查看数据是否同步进去,访问:8030端口
在这里插入图片描述
当我们修改了Mysql中的数据后就会自动同步到Doris

4.表结构同步

Flink CDC 提供了将源表的表结构/数据路由到其他表名的配置,借助这种能力,我们能够实现表名库名替换,整库同步等功能。 下面提供一个配置文件说明:

################################################################################
# Description: Sync MySQL all tables to Doris
################################################################################
source:type: mysqlhostname: localhostport: 3306username: rootpassword: 123456tables: app_db.\.*server-id: 5400-5404server-time-zone: UTCsink:type: dorisfenodes: 127.0.0.1:8030benodes: 127.0.0.1:8040username: rootpassword: ""table.create.properties.light_schema_change: truetable.create.properties.replication_num: 1route:- source-table: app_db.orderssink-table: ods_db.ods_orders- source-table: app_db.shipmentssink-table: ods_db.ods_shipments- source-table: app_db.productssink-table: ods_db.ods_productspipeline:name: Sync MySQL Database to Dorisparallelism: 1

通过上面的 route 配置,会将 app_db.orders 表的结构和数据同步到 ods_db.ods_orders 中。从而实现数据库迁移的功能。 特别地,source-table 支持正则表达式匹配多表,从而实现分库分表同步的功能,例如下面的配置:

route:- source-table: app_db.order\.*sink-table: ods_db.ods_orders

这样,就可以将诸如 app_db.order01、app_db.order02、app_db.order03 的表汇总到 ods_db.ods_orders 中。注意,目前还不支持多表中存在相同主键数据的场景,将在后续版本支持。

文章到这就结束了 ,如果对你有帮助请给个好评

这篇关于三.海量数据实时分析-FlinkCDC实现Mysql数据同步到Doris的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147685

相关文章

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

SQL server配置管理器找不到如何打开它

《SQLserver配置管理器找不到如何打开它》最近遇到了SQLserver配置管理器打不开的问题,尝试在开始菜单栏搜SQLServerManager无果,于是将自己找到的方法总结分享给大家,对SQ... 目录方法一:桌面图标进入方法二:运行窗口进入方法三:查找文件路径方法四:检查 SQL Server 安

MySQL 中的 LIMIT 语句及基本用法

《MySQL中的LIMIT语句及基本用法》LIMIT语句用于限制查询返回的行数,常用于分页查询或取部分数据,提高查询效率,:本文主要介绍MySQL中的LIMIT语句,需要的朋友可以参考下... 目录mysql 中的 LIMIT 语句1. LIMIT 语法2. LIMIT 基本用法(1) 获取前 N 行数据(

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(