三.海量数据实时分析-FlinkCDC实现Mysql数据同步到Doris

本文主要是介绍三.海量数据实时分析-FlinkCDC实现Mysql数据同步到Doris,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FlinkCDC 同步Mysql到Doris

参考:https://nightlies.apache.org/flink/flink-cdc-docs-release-3.0/zh/docs/get-started/quickstart/mysql-to-doris/

1.安装Flink

下载 Flink 1.18.0,下载后把压缩包上传到服务器,使用tar -zxvf flink-xxx-bin-scala_2.12.tgz 解压后得到 flink-1.18.0 目录

cd flink-1.18.1

然后需要配置FLINK_HOME ,执行vi /etc/profile,增加如下内容

export FLINK_HOME=/root/flink/flink-1.18.1 #你的安装目录
export PATH=$PATH:$FLINK_HOME/bin

执行:source /etc/profile 让其生效,然后通过在 conf/flink-conf.yaml 配置文件追加下列参数开启 checkpoint,每隔 3 秒做一次 checkpoint。

execution.checkpointing.interval: 3000

使用下面的命令启动 Flink 集群,

./bin/start-cluster.sh

启动成功的话,可以在 http://localhost:8081/访问到 Flink Web UI,多次执行 start-cluster.sh 可以拉起多个 TaskManager。如下所示:

在这里插入图片描述
访问之前记得开放防火墙端口

firewall-cmd --zone=public --add-port=8081/tcp --permanent;
firewall-cmd --zone=public --add-port=8030/tcp --permanent;
firewall-cmd --zone=public --add-port=8040/tcp --permanent;
firewall-cmd --zone=public --add-port=9030/tcp --permanent;
firewall-cmd --reload ;

2.准备同步的数据库

准备好Mysql数据库,创建数据库 app_db 和表 orders,products,shipments,并插入数据

-- 创建数据库
CREATE DATABASE app_db;USE app_db;-- 创建 orders 表
CREATE TABLE `orders` (
`id` INT NOT NULL,
`price` DECIMAL(10,2) NOT NULL,
PRIMARY KEY (`id`)
);-- 插入数据
INSERT INTO `orders` (`id`, `price`) VALUES (1, 4.00);
INSERT INTO `orders` (`id`, `price`) VALUES (2, 100.00);-- 创建 shipments 表
CREATE TABLE `shipments` (
`id` INT NOT NULL,
`city` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`)
);-- 插入数据
INSERT INTO `shipments` (`id`, `city`) VALUES (1, 'beijing');
INSERT INTO `shipments` (`id`, `city`) VALUES (2, 'xian');-- 创建 products 表
CREATE TABLE `products` (
`id` INT NOT NULL,
`product` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`)
);-- 插入数据
INSERT INTO `products` (`id`, `product`) VALUES (1, 'Beer');
INSERT INTO `products` (`id`, `product`) VALUES (2, 'Cap');
INSERT INTO `products` (`id`, `product`) VALUES (3, 'Peanut');

给doris创建数据库,通过 Web UI 创建 app_db 数据库 :create database app_db;

在这里插入图片描述

3.安装FlinkCDC

下载 flink cdc-3.0.0 的二进制压缩包 flink-cdc-3.0.0-bin.tar.gz,并解压得到目录 flink cdc-3.0.0 ':. flink-cdc-3.0.0 下会包含 bin、lib、log、conf 四个目录

在这里插入图片描述

然后把下面2个 connector 包,并且移动到 lib 目录下

  • MySQL pipeline connector 3.0.0 : mysql的驱动
  • Apache Doris pipeline connector 3.0.0 : doris的驱动

在这里插入图片描述
编写任务配置 yaml 文件 文件可以放到config目录下。 下面给出了一个整库同步的示例文件 mysql-to-doris.yaml,

################################################################################
# Description: Sync MySQL all tables to Doris
################################################################################
source:type: mysqlhostname: 192.168.220.253port: 3307username: rootpassword: 123456tables: app_db.\.*server-id: 5400-5404server-time-zone: UTCsink:type: dorisfenodes: 127.0.0.1:8030username: rootpassword: 123456table.create.properties.light_schema_change: truetable.create.properties.replication_num: 1pipeline:name: Sync MySQL Database to Dorisparallelism: 1

其中: source 中的 tables: app_db..* 通过正则匹配同步 app_db 下的所有表。 sink 添加table.create.properties.replication_num :1 参数是由于 只有一个 Doris BE 节点。

最后,进入到 flink-cdc-3.0.0 目录,通过命令行提交任务到 Flink Standalone cluster :bash bin/flink-cdc.sh mysql-to-doris.yaml

[root@localhost flink-cdc-3.0.0]# bash bin/flink-cdc.sh conf/mysql-to-doris.yaml 
Pipeline has been submitted to cluster.
Job ID: 13e2925fd46e5840243c9523cd093e11
Job Description: Sync MySQL Database to Doris

执行之后查看flink的控制台界面 : 访问 8081端口
在这里插入图片描述
点击 Job Name 进入任务,可以看到同步的情况,还可以查看任务日志如下
在这里插入图片描述
登录doris的控制台,查看数据是否同步进去,访问:8030端口
在这里插入图片描述
当我们修改了Mysql中的数据后就会自动同步到Doris

4.表结构同步

Flink CDC 提供了将源表的表结构/数据路由到其他表名的配置,借助这种能力,我们能够实现表名库名替换,整库同步等功能。 下面提供一个配置文件说明:

################################################################################
# Description: Sync MySQL all tables to Doris
################################################################################
source:type: mysqlhostname: localhostport: 3306username: rootpassword: 123456tables: app_db.\.*server-id: 5400-5404server-time-zone: UTCsink:type: dorisfenodes: 127.0.0.1:8030benodes: 127.0.0.1:8040username: rootpassword: ""table.create.properties.light_schema_change: truetable.create.properties.replication_num: 1route:- source-table: app_db.orderssink-table: ods_db.ods_orders- source-table: app_db.shipmentssink-table: ods_db.ods_shipments- source-table: app_db.productssink-table: ods_db.ods_productspipeline:name: Sync MySQL Database to Dorisparallelism: 1

通过上面的 route 配置,会将 app_db.orders 表的结构和数据同步到 ods_db.ods_orders 中。从而实现数据库迁移的功能。 特别地,source-table 支持正则表达式匹配多表,从而实现分库分表同步的功能,例如下面的配置:

route:- source-table: app_db.order\.*sink-table: ods_db.ods_orders

这样,就可以将诸如 app_db.order01、app_db.order02、app_db.order03 的表汇总到 ods_db.ods_orders 中。注意,目前还不支持多表中存在相同主键数据的场景,将在后续版本支持。

文章到这就结束了 ,如果对你有帮助请给个好评

这篇关于三.海量数据实时分析-FlinkCDC实现Mysql数据同步到Doris的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147685

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa