代码随想录算法训练营Day45|70. 爬楼梯(进阶版)、322. 零钱兑换、279.完全平方数

本文主要是介绍代码随想录算法训练营Day45|70. 爬楼梯(进阶版)、322. 零钱兑换、279.完全平方数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

70. 爬楼梯(进阶版)

前言

思路

算法实现

 322. 零钱兑换

 前言

思路

 279.完全平方数

前言

思路

算法实现 

总结


70. 爬楼梯(进阶版)

题目链接

文章链接

前言

        本题是70. 爬楼梯问题的进阶版,每次可以跳跃的台阶数之多为m阶,可以用完全背包的方法解决。

思路

        利用动规五部曲进行分析:

1.确定dp数组及其下标含义:

        dp[j]:爬上第j阶楼梯有dp[j]种不同的方法。

2.确定递推公式:

        本题依旧是求装满背包有几种方法类型的题目,依然是递推公式dp[j] += dp[j - nums[i]],本题中为dp[j] += dp[j - i];

3.dp数组初始化:

        既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

        下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果。

4.确定遍历顺序:

        本题是一道排列问题,因为先跳两步后跳一步,和先跳一步再跳两步是有区别的。因此遍历顺序是先遍历背包,再遍历物品。

5.打印dp数组:

        省略。

算法实现

#include <bits/stdc++.h>
using namespace std;int main() {int n, m;cin >> n >> m;vector <int> dp (n + 1, 0);dp[0] = 1;for (int j = 1; j <= n; j++) {for (int i = 1; i <= m; i++){if (j >= i) dp[j] += dp[j - i];}}cout << dp[n] << endl;
}

 322. 零钱兑换

题目链接

文章链接

 前言

        本题与零钱兑换II有些类似,零钱兑换II是求凑成总金额有多少种不同的方法,而本题是凑成总金额最少的硬币个数。

思路

        题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。利用动规五部曲进行分析:

1.确定dp数组及其下标的含义:

        dp[j]:凑层总金额j所需要的最少硬币个数为dp[j];

2.确定递推公式:

        凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j],所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

        递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

3.初始化dp数组:

        首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;对于其他下标,由于递推公式求得是最小值,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。所以下标非0的元素都是应该是最大值(INT_MAX);

4.确定遍历顺序:

        本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。所以本题并不强调集合是组合还是排列。

        因此对于求装满背包的最多物品个数和最少物品个数,不需要考虑组合排列问题,即先遍历背包和先遍历物品都可以。

5.打印dp数组:

        以输入:coins = [1, 2, 5], amount = 5为例,最终得到的dp数组如下:

算法实现

class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX);dp[0] = 0;for (int i = 0; i < coins.size(); i++) {for (int j = coins[i]; j <= amount ; j++) {if (dp[j - coins[i]] != INT_MAX) {dp[j] = min(dp[j - coins[i]] + 1, dp[j]);}}}if (dp[amount] == INT_MAX) return -1;return dp[amount];}
};

 279.完全平方数

题目链接

文章链接

前言

        本题也是一道完全背包问题,转换一下题目语言就是:要装满一个容量为n的背包所使用的最少物品个数是多少?

思路

        本题的整体思路与上一题零钱兑换类似,都是求装满背包的最少物品个数,唯一的不同就是这次没有给物品的集合。采用动规五部曲进行分析:

1.确定dp数组及其下标含义:

        dp[j]:要装满容量为j的背包最少的物品个数为dp[j];

2.确定递推公式:

        dp[j] = min(dp[j - i] + 1, dp[j]);

3.初始化dp数组:

        dp[0]表示和为0的完全平方数的最小数量,那么dp[0]一定是0。其余下标依旧初始化为最大值INT_MAX;

4.确定遍历顺序:

        求装满背包的最小数量,不用考虑组合排列问题,遍历顺序没有要求;

5.打印dp数组:

        已输入n为5例,dp状态图如下:

算法实现 

class Solution {
public:int numSquares(int n) {vector<int> dp (n + 1, INT_MAX);dp[0] = 0;for (int i = 1; i * i <= n; i++) {for (int j = i * i; j <= n; j++) {dp[j] = min(dp[j - i * i] + 1, dp[j]);}}return dp[n];}
};

总结

        今天学会了背包问题之处理装满背包最少物品的方法,对于背包问题的处理感觉有点感觉了。

这篇关于代码随想录算法训练营Day45|70. 爬楼梯(进阶版)、322. 零钱兑换、279.完全平方数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/671158

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤