VINS-fusion 跑通Euroc、TUM、KITTI数据集,以及评估工具EVO的下载和使用

2024-02-01 15:10

本文主要是介绍VINS-fusion 跑通Euroc、TUM、KITTI数据集,以及评估工具EVO的下载和使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

零、EVO工具获取与使用

ubuntu20.04中python版本是3.x,因此对应的pip工具会变成pip3,可以先参考如下链接查看自己系统的python和pip版本。

Ubuntu20.04安装evo(详细教程)【亲测有效】_ubantu20.04 evo_学无止境的小龟的博客-CSDN博客

再调用如下命令对evo工具进行安装

pip3 install evo --upgrade --no-binary evo

evo使用如下:

EVO工具的使用_evo rmse-CSDN博客

一、Euroc

1.1 Euroc数据集

Euroc数据集包含双目摄像头和IMU的录制数据格式,可以完成mono+imu、stereo、stereo+imu三种形式的数据播放。

首先应该获取Euroc数据集,Euroc数据集的获取网址如下:

kmavvisualinertialdatasets – ASL Datasets

在该页面,通过下载ROS bag格式数据集,使用ros进行数据读取。下载ASL数据格式,在解压后的压缩包中可以获得gt值,方便EVO工具评估使用。

1.2  VINS-fusion文件存储格式修改

需要修改的有三个地方,修改这三个地方以保证跑完vins后文件的存储格式能够被evo工具识别。

可以参考如下文件:

SLAM中evo评估工具(用自己的数据集评估vinsFusion)_vins-fusion运行自己的数据集_linzs.online的博客-CSDN博客

1.3 数据集运行

使用rosbag运行数据集命令如下,以MH_04_difficult.bag为例。

我选择的方式是双目stereo+imu的形式,命令如下:

#分别在五个终端的vins_ws空间下source后,运行:
roscore
rosrun vins vins_node /home/jetson/vins_ws/src/vins-fusion-master/config/euroc/euroc_stereo_imu_config.yaml
rosrun loop_fusion loop_fusion_node /home/jetson/vins_ws/src/vins-fusion-master/config/euroc/euroc_stereo_imu_config.yaml
roslaunch vins vins_rviz.launch
rosbag play MH_04_difficult.bag

1.4 结果保存与评估

根据euroc_stereo_imu_config.yaml文件中对结果存储路径的改写,我的结果存储在

其中,vio.csv和vio_loop.csv为vins运行后的结果。MH_04_GT.tum是根据下载下来的ASL压缩包中data.csv,使用evo工具转换来的,转换命令如下:

evo_traj euroc data.csv --save_as_tum

得到真值文件之后,可以通过evo中的一些命令工具,参考零中的

“EVO工具的使用_evo rmse-CSDN博客”

可以编写如下命令对evo工具进行调用并评估算法性能。

在/home/jetson/vins_ws/data/euroc路径下调用:

evo_ape tum vio_loop.csv /home/jetson/vins_ws/data/euroc/MH_04_GT.tum -va --plot --plot_mode xyz
evo_rpe tum vio_loop.csv /home/jetson/vins_ws/data/euroc/MH_04_GT.tum -r full -va --plot --plot_mode xyz

评估结果如下:

二、TUM数据集

2.1 TUM数据集获取

Computer Vision Group - Datasets - Visual-Inertial Dataset

这里以dataset-room1_512_16.bag文件为例,.bag文件是用rosbag进行播放的,而.tgz文件中包含了gt值,可以用来评估算法性能。

2.2 TUM配置文件编写

首先需要编写对应的TUM配置文件,可以参考euroc文件格式,修改对应的相机内参、相机和IMU之间的外参即可。

目前,我的tum_mono_imu.yaml和cam0.yaml文件编写如下

tum_mono_imu.yaml

这里需要注意,在本身VINS-fusion关于euroc_mono_imu_config.yaml 或者 euroc_stereo_imu_config.yaml中有一个重要参数FLOW_BACK,当该参数调整为1时将会开启光流特征点检测,提升准确性。网上大部分写好的tmu_mono_imu.yaml并没有该参数,需要自行配置。配置好的文件如下:

%YAML:1.0imu: 1         
num_of_cam: 1  #common parameters
imu_topic: "/imu0"
image0_topic: "/cam0/image_raw"
output_path: "/home/jetson/vins_ws/data/tum/"cam0_calib: "cam0.yaml"
image_width: 512
image_height: 512# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 0   # 0  Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.# 1  Have an initial guess about extrinsic parameters. We will optimize around your initial guess.# 2  Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning.                        
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
body_T_cam0: !!opencv-matrixrows: 4cols: 4dt: ddata: [ -9.9951465899298464e-01, 7.5842033363785165e-03, -3.0214670573904204e-02, 4.4511917113940799e-02,2.9940114644659861e-02, -3.4023430206013172e-02, -9.9897246995704592e-01, -7.3197096234105752e-02,-8.6044170750674241e-03, -9.9939225835343004e-01, 3.3779845322755464e-02 ,-4.7972907300764499e-02,0,   0,    0,    1]#Multiple thread support
multiple_thread: 1#feature traker paprameters
max_cnt: 150            # max feature number in feature tracking
min_dist: 15            # min distance between two features 
freq: 10                # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 
F_threshold: 1.0        # ransac threshold (pixel)
show_track: 1           # publish tracking image as topic
equalize: 1             # if image is too dark or light, trun on equalize to find enough features
fisheye: 1              # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points
flow_back: 1            # perform forward and backward optical flow to improve feature tracking accuracy#optimization parameters
max_solver_time: 0.04  # max solver itration time (ms), to guarantee real time
max_num_iterations: 8   # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)#imu parameters       The more accurate parameters you provide, the better performance
acc_n: 0.04          # accelerometer measurement noise standard deviation. #0.2   0.04
gyr_n: 0.004         # gyroscope measurement noise standard deviation.     #0.05  0.004
acc_w: 0.0004         # accelerometer bias random work noise standard deviation.  #0.02
gyr_w: 2.0e-5       # gyroscope bias random work noise standard deviation.     #4.0e-5
g_norm: 9.80766     # gravity magnitude#unsynchronization parameters
estimate_td: 0                      # online estimate time offset between camera and imu
td: 0.0                             # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)#rolling shutter parameters
rolling_shutter: 0                  # 0: global shutter camera, 1: rolling shutter camera
rolling_shutter_tr: 0               # unit: s. rolling shutter read out time per frame (from data sheet). #loop closure parameters
load_previous_pose_graph: 0        # load and reuse previous pose graph; load from 'pose_graph_save_path'
pose_graph_save_path: "/home/jetson/vins_ws/data/tum/" # save and load path
save_image: 0                   # save image in pose graph for visualization prupose; you can close this function by setting 0 

 cam0.yaml

%YAML:1.0
---
model_type: KANNALA_BRANDT
camera_name: camera
image_width: 512
image_height: 512
mirror_parameters:xi: 3.6313355285286337e+00gamma1: 2.1387619122017772e+03
projection_parameters:k2: 0.0034823894022493434k3: 0.0007150348452162257k4: -0.0020532361418706202k5: 0.00020293673591811182mu: 190.97847715128717mv: 190.9733070521226u0: 254.93170605935475v0: 256.8974428996504

2.3 数据集运行

#分别在五个终端的vins_ws空间下source后,运行:
roscore
rosrun vins vins_node /home/jetson/vins_ws/src/vins-fusion-master/config/TUM/tum_mono_imu.yaml
rosrun loop_fusion loop_fusion_node /home/jetson/vins_ws/src/vins-fusion-master/config/TUM/tum_mono_imu.yaml
roslaunch vins vins_rviz.launch
rosbag play dataset-room1_512_16.bag

2.4 结果保存与评估

首先,调用如下命令将真值转换成tum格式,方便evo进行评比

evo_traj euroc gt_imu.csv --save_as_tum
evo_traj tum groundtruth.txt --save_as_tum

之后,再将得到的vio_loop.csv与真值文件进行比较,得到比较结果

在/home/jetson/vins_ws/data/tum路径下调用(为了与tum其它数据集区分开,我这里选择命名为_room1)

evo_ape tum vio_loop.csv /home/jetson/vins_ws/data/tum/gt_tum_room1.tum -va --plot --plot_mode xyz
evo_rpe tum vio_loop.csv /home/jetson/vins_ws/data/tum/gt_tum_room1.tum -r full -va --plot --plot_mode xyz

多轨迹比较(根据slam方案的存储文件格式,需要自主修改名字,这里举例是真值、开回环和无回环的情况):

evo_traj tum vio.csv vio_loop.csv /home/jetson/vins_ws/data/tum/gt_tum_room1.tum -p --plot_mode=xyz

评估结果如下:

 三条轨迹比较结果如下:

 如果想比较多轨迹并对齐,可以调用如下命令:

evo_traj tum Ours_tumroom1.csv VINS+F_tumroom1.csv VINS+TH_tumroom1.csv MASOR1_tumroom1.csv VINS_tumroom1.csv --ref=/home/jetson/vins_ws/data/tum/gt_tum_room1.tum -p --plot_mode=xy --align --correct_scale

三、KITTI数据集

KITTI数据集是纯双目的,不考虑IMU的融合。

3.1 KITTI数据集获取

下载地址为The KITTI Vision Benchmark Suite,GT值也可以在这个页面下载。

或者在下面的博客里有KITTI的链接。

VINS-Fusion : EUROC、TUM、KITTI测试成功 + 程序进程详细梳理_vins fusion kitti-CSDN博客

这篇关于VINS-fusion 跑通Euroc、TUM、KITTI数据集,以及评估工具EVO的下载和使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/667633

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,