VINS-fusion 跑通Euroc、TUM、KITTI数据集,以及评估工具EVO的下载和使用

2024-02-01 15:10

本文主要是介绍VINS-fusion 跑通Euroc、TUM、KITTI数据集,以及评估工具EVO的下载和使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

零、EVO工具获取与使用

ubuntu20.04中python版本是3.x,因此对应的pip工具会变成pip3,可以先参考如下链接查看自己系统的python和pip版本。

Ubuntu20.04安装evo(详细教程)【亲测有效】_ubantu20.04 evo_学无止境的小龟的博客-CSDN博客

再调用如下命令对evo工具进行安装

pip3 install evo --upgrade --no-binary evo

evo使用如下:

EVO工具的使用_evo rmse-CSDN博客

一、Euroc

1.1 Euroc数据集

Euroc数据集包含双目摄像头和IMU的录制数据格式,可以完成mono+imu、stereo、stereo+imu三种形式的数据播放。

首先应该获取Euroc数据集,Euroc数据集的获取网址如下:

kmavvisualinertialdatasets – ASL Datasets

在该页面,通过下载ROS bag格式数据集,使用ros进行数据读取。下载ASL数据格式,在解压后的压缩包中可以获得gt值,方便EVO工具评估使用。

1.2  VINS-fusion文件存储格式修改

需要修改的有三个地方,修改这三个地方以保证跑完vins后文件的存储格式能够被evo工具识别。

可以参考如下文件:

SLAM中evo评估工具(用自己的数据集评估vinsFusion)_vins-fusion运行自己的数据集_linzs.online的博客-CSDN博客

1.3 数据集运行

使用rosbag运行数据集命令如下,以MH_04_difficult.bag为例。

我选择的方式是双目stereo+imu的形式,命令如下:

#分别在五个终端的vins_ws空间下source后,运行:
roscore
rosrun vins vins_node /home/jetson/vins_ws/src/vins-fusion-master/config/euroc/euroc_stereo_imu_config.yaml
rosrun loop_fusion loop_fusion_node /home/jetson/vins_ws/src/vins-fusion-master/config/euroc/euroc_stereo_imu_config.yaml
roslaunch vins vins_rviz.launch
rosbag play MH_04_difficult.bag

1.4 结果保存与评估

根据euroc_stereo_imu_config.yaml文件中对结果存储路径的改写,我的结果存储在

其中,vio.csv和vio_loop.csv为vins运行后的结果。MH_04_GT.tum是根据下载下来的ASL压缩包中data.csv,使用evo工具转换来的,转换命令如下:

evo_traj euroc data.csv --save_as_tum

得到真值文件之后,可以通过evo中的一些命令工具,参考零中的

“EVO工具的使用_evo rmse-CSDN博客”

可以编写如下命令对evo工具进行调用并评估算法性能。

在/home/jetson/vins_ws/data/euroc路径下调用:

evo_ape tum vio_loop.csv /home/jetson/vins_ws/data/euroc/MH_04_GT.tum -va --plot --plot_mode xyz
evo_rpe tum vio_loop.csv /home/jetson/vins_ws/data/euroc/MH_04_GT.tum -r full -va --plot --plot_mode xyz

评估结果如下:

二、TUM数据集

2.1 TUM数据集获取

Computer Vision Group - Datasets - Visual-Inertial Dataset

这里以dataset-room1_512_16.bag文件为例,.bag文件是用rosbag进行播放的,而.tgz文件中包含了gt值,可以用来评估算法性能。

2.2 TUM配置文件编写

首先需要编写对应的TUM配置文件,可以参考euroc文件格式,修改对应的相机内参、相机和IMU之间的外参即可。

目前,我的tum_mono_imu.yaml和cam0.yaml文件编写如下

tum_mono_imu.yaml

这里需要注意,在本身VINS-fusion关于euroc_mono_imu_config.yaml 或者 euroc_stereo_imu_config.yaml中有一个重要参数FLOW_BACK,当该参数调整为1时将会开启光流特征点检测,提升准确性。网上大部分写好的tmu_mono_imu.yaml并没有该参数,需要自行配置。配置好的文件如下:

%YAML:1.0imu: 1         
num_of_cam: 1  #common parameters
imu_topic: "/imu0"
image0_topic: "/cam0/image_raw"
output_path: "/home/jetson/vins_ws/data/tum/"cam0_calib: "cam0.yaml"
image_width: 512
image_height: 512# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 0   # 0  Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.# 1  Have an initial guess about extrinsic parameters. We will optimize around your initial guess.# 2  Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning.                        
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
body_T_cam0: !!opencv-matrixrows: 4cols: 4dt: ddata: [ -9.9951465899298464e-01, 7.5842033363785165e-03, -3.0214670573904204e-02, 4.4511917113940799e-02,2.9940114644659861e-02, -3.4023430206013172e-02, -9.9897246995704592e-01, -7.3197096234105752e-02,-8.6044170750674241e-03, -9.9939225835343004e-01, 3.3779845322755464e-02 ,-4.7972907300764499e-02,0,   0,    0,    1]#Multiple thread support
multiple_thread: 1#feature traker paprameters
max_cnt: 150            # max feature number in feature tracking
min_dist: 15            # min distance between two features 
freq: 10                # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 
F_threshold: 1.0        # ransac threshold (pixel)
show_track: 1           # publish tracking image as topic
equalize: 1             # if image is too dark or light, trun on equalize to find enough features
fisheye: 1              # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points
flow_back: 1            # perform forward and backward optical flow to improve feature tracking accuracy#optimization parameters
max_solver_time: 0.04  # max solver itration time (ms), to guarantee real time
max_num_iterations: 8   # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)#imu parameters       The more accurate parameters you provide, the better performance
acc_n: 0.04          # accelerometer measurement noise standard deviation. #0.2   0.04
gyr_n: 0.004         # gyroscope measurement noise standard deviation.     #0.05  0.004
acc_w: 0.0004         # accelerometer bias random work noise standard deviation.  #0.02
gyr_w: 2.0e-5       # gyroscope bias random work noise standard deviation.     #4.0e-5
g_norm: 9.80766     # gravity magnitude#unsynchronization parameters
estimate_td: 0                      # online estimate time offset between camera and imu
td: 0.0                             # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)#rolling shutter parameters
rolling_shutter: 0                  # 0: global shutter camera, 1: rolling shutter camera
rolling_shutter_tr: 0               # unit: s. rolling shutter read out time per frame (from data sheet). #loop closure parameters
load_previous_pose_graph: 0        # load and reuse previous pose graph; load from 'pose_graph_save_path'
pose_graph_save_path: "/home/jetson/vins_ws/data/tum/" # save and load path
save_image: 0                   # save image in pose graph for visualization prupose; you can close this function by setting 0 

 cam0.yaml

%YAML:1.0
---
model_type: KANNALA_BRANDT
camera_name: camera
image_width: 512
image_height: 512
mirror_parameters:xi: 3.6313355285286337e+00gamma1: 2.1387619122017772e+03
projection_parameters:k2: 0.0034823894022493434k3: 0.0007150348452162257k4: -0.0020532361418706202k5: 0.00020293673591811182mu: 190.97847715128717mv: 190.9733070521226u0: 254.93170605935475v0: 256.8974428996504

2.3 数据集运行

#分别在五个终端的vins_ws空间下source后,运行:
roscore
rosrun vins vins_node /home/jetson/vins_ws/src/vins-fusion-master/config/TUM/tum_mono_imu.yaml
rosrun loop_fusion loop_fusion_node /home/jetson/vins_ws/src/vins-fusion-master/config/TUM/tum_mono_imu.yaml
roslaunch vins vins_rviz.launch
rosbag play dataset-room1_512_16.bag

2.4 结果保存与评估

首先,调用如下命令将真值转换成tum格式,方便evo进行评比

evo_traj euroc gt_imu.csv --save_as_tum
evo_traj tum groundtruth.txt --save_as_tum

之后,再将得到的vio_loop.csv与真值文件进行比较,得到比较结果

在/home/jetson/vins_ws/data/tum路径下调用(为了与tum其它数据集区分开,我这里选择命名为_room1)

evo_ape tum vio_loop.csv /home/jetson/vins_ws/data/tum/gt_tum_room1.tum -va --plot --plot_mode xyz
evo_rpe tum vio_loop.csv /home/jetson/vins_ws/data/tum/gt_tum_room1.tum -r full -va --plot --plot_mode xyz

多轨迹比较(根据slam方案的存储文件格式,需要自主修改名字,这里举例是真值、开回环和无回环的情况):

evo_traj tum vio.csv vio_loop.csv /home/jetson/vins_ws/data/tum/gt_tum_room1.tum -p --plot_mode=xyz

评估结果如下:

 三条轨迹比较结果如下:

 如果想比较多轨迹并对齐,可以调用如下命令:

evo_traj tum Ours_tumroom1.csv VINS+F_tumroom1.csv VINS+TH_tumroom1.csv MASOR1_tumroom1.csv VINS_tumroom1.csv --ref=/home/jetson/vins_ws/data/tum/gt_tum_room1.tum -p --plot_mode=xy --align --correct_scale

三、KITTI数据集

KITTI数据集是纯双目的,不考虑IMU的融合。

3.1 KITTI数据集获取

下载地址为The KITTI Vision Benchmark Suite,GT值也可以在这个页面下载。

或者在下面的博客里有KITTI的链接。

VINS-Fusion : EUROC、TUM、KITTI测试成功 + 程序进程详细梳理_vins fusion kitti-CSDN博客

这篇关于VINS-fusion 跑通Euroc、TUM、KITTI数据集,以及评估工具EVO的下载和使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/667633

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、