[足式机器人]Part3 机构运动学与动力学分析与建模 Ch01-1 刚体系统的运动学约束

本文主要是介绍[足式机器人]Part3 机构运动学与动力学分析与建模 Ch01-1 刚体系统的运动学约束,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
《空间机构的分析与综合(上册)》-张启先,感谢张启先先生对机构学的卓越贡献,希望下册有见天明之日!
《高等机构学》-白师贤
《高等空间机构学》-黄真
《机构运动微分几何学分析与综合》-王德伦

食用方法
自由度?约束——本质含义是什么?如何表达?
系统的自由度?广义坐标的自由度?
如何表示约束方程?
务必自己计算自由度,了解约束的含义

机构运动学与动力学分析与建模 Ch00-1-1 刚体系统的运动学约束


1. 广义坐标与约束

1.1 参考坐标

根据上述章节的学习,我们知道:

  • 空间中对某一的表述,需要3个位姿参数(比如点的坐标)——即需要3个约束方程;
  • 空间中对某一矢量的表述,需要2个位姿参数(比如球坐标系下的两个角度值)——即需要2个约束方程;
  • 空间中对某一直线的表述,需要5个位姿参数(给定点+给定矢量)——即需要5个约束方程;
  • 空间中对某一平面的表述,需要4个位姿数(给定矢量+矢量方向上的位置)——即需要4个约束方程;
  • 空间中对某一刚体的表述,需要6个位姿参数(给定点+矢量方向+沿矢量方向的转角)——即需要6个约束方程;

这些例子对于我们理解运动副有很大的作用

而对于刚体系统而言,其运动坐标系的参考坐标具体表示,与所选择的表示方法有关:用符号 q ⃗ Σ M F \vec{q}_{\varSigma _{\mathrm{M}}}^{F} q ΣMF来表示刚体 Σ M \varSigma _{\mathrm{M}} ΣM在坐标系 { F } \left\{ F \right\} {F}下的广义坐标参数。展开可写为:
q ⃗ Σ M F = [ R ⃗ Σ M F θ ⃗ Σ M F ] \vec{q}_{\varSigma _{\mathrm{M}}}^{F}=\left[ \begin{array}{c} \vec{R}_{\varSigma _{\mathrm{M}}}^{F}\\ \vec{\theta}_{\varSigma _{\mathrm{M}}}^{F}\\ \end{array} \right] q ΣMF=[R ΣMFθ ΣMF]
其中: R ⃗ Σ M F \vec{R}_{\varSigma _{\mathrm{M}}}^{F} R ΣMF表示体坐标系 { M } \left\{ M \right\} {M}在固定坐标系 { F } \left\{ F \right\} {F}下的位置参数, θ ⃗ Σ M F \vec{\theta}_{\varSigma _{\mathrm{M}}}^{F} θ ΣMF表示刚体的姿态参数(欧拉角,四元数,罗德里格斯参数等),对于不同的表达方式, q ⃗ Σ M F \vec{q}_{\varSigma _{\mathrm{M}}}^{F} q ΣMF有不同的维数。

1.2 约束

若一个系统由多个刚体之间的相互作用组成(存在运动副连接),此时该系统中每个单独刚体的运动,都会受到其他部分的影响——确立一组相互独立的广义坐标(即自由度——此时的自由度表示为所需的广义坐标数量,即需要几个自由度才能完整的描述该系统各个构件状态),运动学约束即上述的约束方程,几个约束方程即限制了几个自由度。

对于一个多体系统而言,其广义坐标的数目为 n n n,这些刚体之间存在 n c n_{\mathrm{c}} nc个约束方程

若能将约束方程写成如下的矩阵形式:
C ( q ⃗ , t ) = [ C 1 ( q ⃗ , t ) C 2 ( q ⃗ , t ) ⋮ C n c ( q ⃗ , t ) ] = C ( q ⃗ 1 , q ⃗ 2 , ⋯   , q ⃗ n , t ) \boldsymbol{C}\left( \vec{\boldsymbol{q}},t \right) =\left[ \begin{array}{c} C_1\left( \vec{\boldsymbol{q}},t \right)\\ C_2\left( \vec{\boldsymbol{q}},t \right)\\ \vdots\\ C_{\mathrm{n}_{\mathrm{c}}}\left( \vec{\boldsymbol{q}},t \right)\\ \end{array} \right] =\boldsymbol{C}\left( \vec{q}_1,\vec{q}_2,\cdots ,\vec{q}_{\mathrm{n}},t \right) C(q ,t)= C1(q ,t)C2(q ,t)Cnc(q ,t) =C(q 1,q 2,,q

这篇关于[足式机器人]Part3 机构运动学与动力学分析与建模 Ch01-1 刚体系统的运动学约束的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/658351

相关文章

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整