C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码

本文主要是介绍C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、三角剖分Delaunay算法简介

点集的三角剖分(Triangulation),对数值分析(比如有限元分析)以及图形学来说,都是极为重要的一项预处理技术。尤其是Delaunay三角剖分,由于其独特性,关于点集的很多种几何图都和Delaunay三角剖分相关,如Voronoi图,EMST树,Gabriel图等。Delaunay三角剖分有最大化最小角,“最接近于规则化的“的三角网和唯一性(任意四点不能共圆)两个特点。

 EMST(Euclidean minimum spanning tree)

Delaunay 三角剖分广泛应用于许多不同应用程序中的科学计算。虽然有大量的计算三角剖分的算法,但 Delaunay 三角剖分以其实用的几何属性广受欢迎。

 Gabriel Graph

基本属性是 Delaunay 规则。如果是二维三角剖分,通常将其称为空外接圆规则。对于一组二维点而言,这些点的 Delaunay 三角剖分可确保与每个三角形相关的外接圆的内部都不包含其他点。这种三角剖分便是 Delaunay 三角剖分。

Delaunay 三角剖分堪称“外形整齐”,原因在于为满足空外接圆属性,优先选择带有较大内角的三角形,而不是带有较小内角的三角形。非 Delaunay 三角剖分中的三角形在顶点 V2 和 V4 处呈锐角。如果将 {V2, V4} 边替换为连接 V1 和 V3 的边,会实现最小角的最大化并且使得该三角剖分变为 Delaunay 三角剖分。另外,Delaunay 三角剖分将最近邻点的点连接在一起。这两个特征(外形整齐和最近邻点关系)在实践中具有重要的作用,有助于促进在散点数据插值中使用 Delaunay 三角剖分。

虽然 Delaunay 属性定义明确,但存在退化点集时三角剖分的拓扑并不唯一。在二维中,4 个或更多特征点位于同一圆中时会引发退化。例如,正方形的顶点不具有唯一的 Delaunay 三角剖分。
 

二、三角剖分Delaunay算法的源代码


namespace Legalsoft.Truffer.Algorithm
{public struct Vertex{public int x;public int y;public int z;}public struct Triangle{public int vv0;public int vv1;public int vv2;}public class Delaunay{public const int MaxVertices = 500;public const int MaxTriangles = 1000;public Vertex[] Vertex = new Vertex[MaxVertices];public Triangle[] Triangle = new Triangle[MaxTriangles];private bool InCircle(int xp, int yp, int x1, int y1, int x2, int y2, int x3, int y3, double xc, double yc, double r){double eps;double m1;double m2;double mx1;double mx2;double my1;double my2;double dx;double dy;double rsqr;double drsqr;eps = 0.000000001;if (Math.Abs(y1 - y2) < eps && Math.Abs(y2 - y3) < eps){MessageBox.Show("INCIRCUM - F - Points are coincident !!");return false;}if (Math.Abs(y2 - y1) < eps){m2 = (-(Convert.ToDouble(x3) - Convert.ToDouble(x2)) / (Convert.ToDouble(y3) - Convert.ToDouble(y2)));mx2 = Convert.ToDouble((x2 + x3) / 2.0);my2 = Convert.ToDouble((y2 + y3) / 2.0);xc = Convert.ToDouble((x2 + x1) / 2.0);yc = Convert.ToDouble(m2 * (xc - mx2) + my2);}else if (Math.Abs(y3 - y2) < eps){m1 = (-(Convert.ToDouble(x2) - Convert.ToDouble(x1)) / (Convert.ToDouble(y2) - Convert.ToDouble(y1)));mx1 = Convert.ToDouble((x1 + x2) / 2.0);my1 = Convert.ToDouble((y1 + y2) / 2.0);xc = Convert.ToDouble((x3 + x2) / 2.0);yc = Convert.ToDouble(m1 * (xc - mx1) + my1);}else{m1 = (-(Convert.ToDouble(x2) - Convert.ToDouble(x1)) / (Convert.ToDouble(y2) - Convert.ToDouble(y1)));m2 = (-(Convert.ToDouble(x3) - Convert.ToDouble(x2)) / (Convert.ToDouble(y3) - Convert.ToDouble(y2)));mx1 = Convert.ToDouble((x1 + x2) / 2.0);mx2 = Convert.ToDouble((x2 + x3) / 2.0);my1 = Convert.ToDouble((y1 + y2) / 2.0);my2 = Convert.ToDouble((y2 + y3) / 2.0);xc = Convert.ToDouble((m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2));yc = Convert.ToDouble(m1 * (xc - mx1) + my1);}dx = (Convert.ToDouble(x2) - Convert.ToDouble(xc));dy = (Convert.ToDouble(y2) - Convert.ToDouble(yc));rsqr = Convert.ToDouble(dx * dx + dy * dy);r = Convert.ToDouble(Math.Sqrt(rsqr));dx = Convert.ToDouble(xp - xc);dy = Convert.ToDouble(yp - yc);drsqr = Convert.ToDouble(dx * dx + dy * dy);if (drsqr <= rsqr){return true;}return false;}private int WhichSide(int xp, int yp, int x1, int y1, int x2, int y2){double equation;equation = ((Convert.ToDouble(yp) - Convert.ToDouble(y1)) * (Convert.ToDouble(x2) - Convert.ToDouble(x1))) - ((Convert.ToDouble(y2) - Convert.ToDouble(y1)) * (Convert.ToDouble(xp) - Convert.ToDouble(x1)));if (equation > 0){return -1;}else if (equation == 0){return 0;}else{return 1;}}public int Triangulate(int nvert){bool[] Complete = new bool[MaxTriangles];long[,] Edges = new long[3, MaxTriangles * 3 + 1];int Nedge;int xmin;int xmax;int ymin;int ymax;int xmid;int ymid;double dx;double dy;double dmax;int i;int j;int k;int ntri;double xc = 0.0;double yc = 0.0;double r = 0.0;bool inc;xmin = Vertex[1].x;ymin = Vertex[1].y;xmax = xmin;ymax = ymin;for (i = 2; i <= nvert; i++){if (Vertex[i].x < xmin){xmin = Vertex[i].x;}if (Vertex[i].x > xmax){xmax = Vertex[i].x;}if (Vertex[i].y < ymin){ymin = Vertex[i].y;}if (Vertex[i].y > ymax){ymax = Vertex[i].y;}}dx = Convert.ToDouble(xmax) - Convert.ToDouble(xmin);dy = Convert.ToDouble(ymax) - Convert.ToDouble(ymin);if (dx > dy){dmax = dx;}else{dmax = dy;}xmid = (xmax + xmin) / 2;ymid = (ymax + ymin) / 2;Vertex[nvert + 1].x = Convert.ToInt64(xmid - 2 * dmax);Vertex[nvert + 1].y = Convert.ToInt64(ymid - dmax);Vertex[nvert + 2].x = xmid;Vertex[nvert + 2].y = Convert.ToInt64(ymid + 2 * dmax);Vertex[nvert + 3].x = Convert.ToInt64(xmid + 2 * dmax);Vertex[nvert + 3].y = Convert.ToInt64(ymid - dmax);Triangle[1].vv0 = nvert + 1;Triangle[1].vv1 = nvert + 2;Triangle[1].vv2 = nvert + 3;Complete[1] = false;ntri = 1;for (i = 1; i <= nvert; i++){Nedge = 0;j = 0;do{j = j + 1;if (Complete[j] != true){inc = InCircle(Vertex[i].x, Vertex[i].y, Vertex[Triangle[j].vv0].x, Vertex[Triangle[j].vv0].y, Vertex[Triangle[j].vv1].x, Vertex[Triangle[j].vv1].y, Vertex[Triangle[j].vv2].x, Vertex[Triangle[j].vv2].y, xc, yc, r);if (inc){Edges[1, Nedge + 1] = Triangle[j].vv0;Edges[2, Nedge + 1] = Triangle[j].vv1;Edges[1, Nedge + 2] = Triangle[j].vv1;Edges[2, Nedge + 2] = Triangle[j].vv2;Edges[1, Nedge + 3] = Triangle[j].vv2;Edges[2, Nedge + 3] = Triangle[j].vv0;Nedge = Nedge + 3;Triangle[j].vv0 = Triangle[ntri].vv0;Triangle[j].vv1 = Triangle[ntri].vv1;Triangle[j].vv2 = Triangle[ntri].vv2;Complete[j] = Complete[ntri];j = j - 1;ntri = ntri - 1;}}}while (j < ntri);for (j = 1; j <= Nedge - 1; j++){if (Edges[1, j] != 0 && Edges[2, j] != 0){for (k = j + 1; k <= Nedge; k++){if (Edges[1, k] != 0 && Edges[2, k] != 0){if (Edges[1, j] == Edges[2, k]){if (Edges[2, j] == Edges[1, k]){Edges[1, j] = 0;Edges[2, j] = 0;Edges[1, k] = 0;Edges[2, k] = 0;}}}}}}for (j = 1; j <= Nedge; j++){if (Edges[1, j] != 0 && Edges[2, j] != 0){ntri = ntri + 1;Triangle[ntri].vv0 = Edges[1, j];Triangle[ntri].vv1 = Edges[2, j];Triangle[ntri].vv2 = i;Complete[ntri] = false;}}}i = 0;do{i = i + 1;if (Triangle[i].vv0 > nvert || Triangle[i].vv1 > nvert || Triangle[i].vv2 > nvert){Triangle[i].vv0 = Triangle[ntri].vv0;Triangle[i].vv1 = Triangle[ntri].vv1;Triangle[i].vv2 = Triangle[ntri].vv2;i = i - 1;ntri = ntri - 1;}}while (i < ntri);return ntri;}}
}

 ——————————————————————

POWER BY 315SOFT.COM &
TRUFFER.CN

这篇关于C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/653324

相关文章

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

C#比较两个List集合内容是否相同的几种方法

《C#比较两个List集合内容是否相同的几种方法》本文详细介绍了在C#中比较两个List集合内容是否相同的方法,包括非自定义类和自定义类的元素比较,对于非自定义类,可以使用SequenceEqual、... 目录 一、非自定义类的元素比较1. 使用 SequenceEqual 方法(顺序和内容都相等)2.

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

C#从XmlDocument提取完整字符串的方法

《C#从XmlDocument提取完整字符串的方法》文章介绍了两种生成格式化XML字符串的方法,方法一使用`XmlDocument`的`OuterXml`属性,但输出的XML字符串不带格式,可读性差,... 方法1:通过XMLDocument的OuterXml属性,见XmlDocument类该方法获得的xm

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,