C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码

本文主要是介绍C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、三角剖分Delaunay算法简介

点集的三角剖分(Triangulation),对数值分析(比如有限元分析)以及图形学来说,都是极为重要的一项预处理技术。尤其是Delaunay三角剖分,由于其独特性,关于点集的很多种几何图都和Delaunay三角剖分相关,如Voronoi图,EMST树,Gabriel图等。Delaunay三角剖分有最大化最小角,“最接近于规则化的“的三角网和唯一性(任意四点不能共圆)两个特点。

 EMST(Euclidean minimum spanning tree)

Delaunay 三角剖分广泛应用于许多不同应用程序中的科学计算。虽然有大量的计算三角剖分的算法,但 Delaunay 三角剖分以其实用的几何属性广受欢迎。

 Gabriel Graph

基本属性是 Delaunay 规则。如果是二维三角剖分,通常将其称为空外接圆规则。对于一组二维点而言,这些点的 Delaunay 三角剖分可确保与每个三角形相关的外接圆的内部都不包含其他点。这种三角剖分便是 Delaunay 三角剖分。

Delaunay 三角剖分堪称“外形整齐”,原因在于为满足空外接圆属性,优先选择带有较大内角的三角形,而不是带有较小内角的三角形。非 Delaunay 三角剖分中的三角形在顶点 V2 和 V4 处呈锐角。如果将 {V2, V4} 边替换为连接 V1 和 V3 的边,会实现最小角的最大化并且使得该三角剖分变为 Delaunay 三角剖分。另外,Delaunay 三角剖分将最近邻点的点连接在一起。这两个特征(外形整齐和最近邻点关系)在实践中具有重要的作用,有助于促进在散点数据插值中使用 Delaunay 三角剖分。

虽然 Delaunay 属性定义明确,但存在退化点集时三角剖分的拓扑并不唯一。在二维中,4 个或更多特征点位于同一圆中时会引发退化。例如,正方形的顶点不具有唯一的 Delaunay 三角剖分。
 

二、三角剖分Delaunay算法的源代码


namespace Legalsoft.Truffer.Algorithm
{public struct Vertex{public int x;public int y;public int z;}public struct Triangle{public int vv0;public int vv1;public int vv2;}public class Delaunay{public const int MaxVertices = 500;public const int MaxTriangles = 1000;public Vertex[] Vertex = new Vertex[MaxVertices];public Triangle[] Triangle = new Triangle[MaxTriangles];private bool InCircle(int xp, int yp, int x1, int y1, int x2, int y2, int x3, int y3, double xc, double yc, double r){double eps;double m1;double m2;double mx1;double mx2;double my1;double my2;double dx;double dy;double rsqr;double drsqr;eps = 0.000000001;if (Math.Abs(y1 - y2) < eps && Math.Abs(y2 - y3) < eps){MessageBox.Show("INCIRCUM - F - Points are coincident !!");return false;}if (Math.Abs(y2 - y1) < eps){m2 = (-(Convert.ToDouble(x3) - Convert.ToDouble(x2)) / (Convert.ToDouble(y3) - Convert.ToDouble(y2)));mx2 = Convert.ToDouble((x2 + x3) / 2.0);my2 = Convert.ToDouble((y2 + y3) / 2.0);xc = Convert.ToDouble((x2 + x1) / 2.0);yc = Convert.ToDouble(m2 * (xc - mx2) + my2);}else if (Math.Abs(y3 - y2) < eps){m1 = (-(Convert.ToDouble(x2) - Convert.ToDouble(x1)) / (Convert.ToDouble(y2) - Convert.ToDouble(y1)));mx1 = Convert.ToDouble((x1 + x2) / 2.0);my1 = Convert.ToDouble((y1 + y2) / 2.0);xc = Convert.ToDouble((x3 + x2) / 2.0);yc = Convert.ToDouble(m1 * (xc - mx1) + my1);}else{m1 = (-(Convert.ToDouble(x2) - Convert.ToDouble(x1)) / (Convert.ToDouble(y2) - Convert.ToDouble(y1)));m2 = (-(Convert.ToDouble(x3) - Convert.ToDouble(x2)) / (Convert.ToDouble(y3) - Convert.ToDouble(y2)));mx1 = Convert.ToDouble((x1 + x2) / 2.0);mx2 = Convert.ToDouble((x2 + x3) / 2.0);my1 = Convert.ToDouble((y1 + y2) / 2.0);my2 = Convert.ToDouble((y2 + y3) / 2.0);xc = Convert.ToDouble((m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2));yc = Convert.ToDouble(m1 * (xc - mx1) + my1);}dx = (Convert.ToDouble(x2) - Convert.ToDouble(xc));dy = (Convert.ToDouble(y2) - Convert.ToDouble(yc));rsqr = Convert.ToDouble(dx * dx + dy * dy);r = Convert.ToDouble(Math.Sqrt(rsqr));dx = Convert.ToDouble(xp - xc);dy = Convert.ToDouble(yp - yc);drsqr = Convert.ToDouble(dx * dx + dy * dy);if (drsqr <= rsqr){return true;}return false;}private int WhichSide(int xp, int yp, int x1, int y1, int x2, int y2){double equation;equation = ((Convert.ToDouble(yp) - Convert.ToDouble(y1)) * (Convert.ToDouble(x2) - Convert.ToDouble(x1))) - ((Convert.ToDouble(y2) - Convert.ToDouble(y1)) * (Convert.ToDouble(xp) - Convert.ToDouble(x1)));if (equation > 0){return -1;}else if (equation == 0){return 0;}else{return 1;}}public int Triangulate(int nvert){bool[] Complete = new bool[MaxTriangles];long[,] Edges = new long[3, MaxTriangles * 3 + 1];int Nedge;int xmin;int xmax;int ymin;int ymax;int xmid;int ymid;double dx;double dy;double dmax;int i;int j;int k;int ntri;double xc = 0.0;double yc = 0.0;double r = 0.0;bool inc;xmin = Vertex[1].x;ymin = Vertex[1].y;xmax = xmin;ymax = ymin;for (i = 2; i <= nvert; i++){if (Vertex[i].x < xmin){xmin = Vertex[i].x;}if (Vertex[i].x > xmax){xmax = Vertex[i].x;}if (Vertex[i].y < ymin){ymin = Vertex[i].y;}if (Vertex[i].y > ymax){ymax = Vertex[i].y;}}dx = Convert.ToDouble(xmax) - Convert.ToDouble(xmin);dy = Convert.ToDouble(ymax) - Convert.ToDouble(ymin);if (dx > dy){dmax = dx;}else{dmax = dy;}xmid = (xmax + xmin) / 2;ymid = (ymax + ymin) / 2;Vertex[nvert + 1].x = Convert.ToInt64(xmid - 2 * dmax);Vertex[nvert + 1].y = Convert.ToInt64(ymid - dmax);Vertex[nvert + 2].x = xmid;Vertex[nvert + 2].y = Convert.ToInt64(ymid + 2 * dmax);Vertex[nvert + 3].x = Convert.ToInt64(xmid + 2 * dmax);Vertex[nvert + 3].y = Convert.ToInt64(ymid - dmax);Triangle[1].vv0 = nvert + 1;Triangle[1].vv1 = nvert + 2;Triangle[1].vv2 = nvert + 3;Complete[1] = false;ntri = 1;for (i = 1; i <= nvert; i++){Nedge = 0;j = 0;do{j = j + 1;if (Complete[j] != true){inc = InCircle(Vertex[i].x, Vertex[i].y, Vertex[Triangle[j].vv0].x, Vertex[Triangle[j].vv0].y, Vertex[Triangle[j].vv1].x, Vertex[Triangle[j].vv1].y, Vertex[Triangle[j].vv2].x, Vertex[Triangle[j].vv2].y, xc, yc, r);if (inc){Edges[1, Nedge + 1] = Triangle[j].vv0;Edges[2, Nedge + 1] = Triangle[j].vv1;Edges[1, Nedge + 2] = Triangle[j].vv1;Edges[2, Nedge + 2] = Triangle[j].vv2;Edges[1, Nedge + 3] = Triangle[j].vv2;Edges[2, Nedge + 3] = Triangle[j].vv0;Nedge = Nedge + 3;Triangle[j].vv0 = Triangle[ntri].vv0;Triangle[j].vv1 = Triangle[ntri].vv1;Triangle[j].vv2 = Triangle[ntri].vv2;Complete[j] = Complete[ntri];j = j - 1;ntri = ntri - 1;}}}while (j < ntri);for (j = 1; j <= Nedge - 1; j++){if (Edges[1, j] != 0 && Edges[2, j] != 0){for (k = j + 1; k <= Nedge; k++){if (Edges[1, k] != 0 && Edges[2, k] != 0){if (Edges[1, j] == Edges[2, k]){if (Edges[2, j] == Edges[1, k]){Edges[1, j] = 0;Edges[2, j] = 0;Edges[1, k] = 0;Edges[2, k] = 0;}}}}}}for (j = 1; j <= Nedge; j++){if (Edges[1, j] != 0 && Edges[2, j] != 0){ntri = ntri + 1;Triangle[ntri].vv0 = Edges[1, j];Triangle[ntri].vv1 = Edges[2, j];Triangle[ntri].vv2 = i;Complete[ntri] = false;}}}i = 0;do{i = i + 1;if (Triangle[i].vv0 > nvert || Triangle[i].vv1 > nvert || Triangle[i].vv2 > nvert){Triangle[i].vv0 = Triangle[ntri].vv0;Triangle[i].vv1 = Triangle[ntri].vv1;Triangle[i].vv2 = Triangle[ntri].vv2;i = i - 1;ntri = ntri - 1;}}while (i < ntri);return ntri;}}
}

 ——————————————————————

POWER BY 315SOFT.COM &
TRUFFER.CN

这篇关于C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/653324

相关文章

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调