OpenGL ES 学习教程(十四) 帧缓冲区对象(FBO) 实现渲染到纹理(Render To Texture/RTT)

本文主要是介绍OpenGL ES 学习教程(十四) 帧缓冲区对象(FBO) 实现渲染到纹理(Render To Texture/RTT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在应用程序调用任何OpenGL ES命令之前,首先都要创建一个渲染上下文(EGLContext) 和 绘图表面(EGLSurface)。并设置这两个成为现行上下文 和 表面。EGLContext 和 EGLSurface 通常是由原生窗口系统通过EGL等API 提供的。

由原生系统提供的EGLSurface 可以是一个在屏幕上显示的表面--窗口系统提供的帧缓冲区,也可以使屏幕外表面。

创建EGLSurface的时候,可以指定EGLSurface的宽高、是否使用颜色、深度、模版缓冲区。转自http://blog.csdn.net/huutu http://www.thisisgame.com.cn

bool initDevice()  
{  const EGLint attribs[] =  {  EGL_SURFACE_TYPE, EGL_WINDOW_BIT,  EGL_BLUE_SIZE, 8,  EGL_GREEN_SIZE, 8,  EGL_RED_SIZE, 8,  EGL_ALPHA_SIZE,8,  EGL_DEPTH_SIZE, 24, //请求深度缓冲区  EGL_STENCIL_SIZE, 8,//请求模版缓冲区  EGL_NONE  };  EGLint  format(0);  EGLint  numConfigs(0);  EGLint  major;  EGLint  minor;  //! 1  m_EGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);  ......  
}  

一般情况下,我们只需要系统提供的帧缓冲区作为绘图表面,但是又有些特殊情况,比如阴影贴图、动态反射、处理后特效等需要渲染到纹理(Render To Texture/RTT)操作的,如果使用系统提供的帧缓冲区,效率会比较低下。

对于系统提供的帧缓冲区,如果要实现RTT,有下面两种方式:

1、直接将帧缓冲区的对应区域 赋值到纹理 来实现RTT。

借助 glCopyTexImage2D / glCopyTexSubImage2D 来从帧缓冲区复制颜色数据到纹理缓冲区。因为需要复制数据,所以操作比较慢,而且受限于EGLSurface的宽高尺寸,纹理的尺寸只能小余 等于 帧缓冲区尺寸。

2、使用连接到纹理的pbuffer 来实现RTT。

窗口系统提供的 EGLSurface必须连接到EGLContext。但是pbuffer 和  EGLSurface 可能需要不同的 EGLContext,这样的实现可能效率低。

而且,在窗口系统提供的EGLSurface 之间切换可能需要清除所有切换之前渲染的图像,这会造成CPU的闲置。这种情况下建议不要使用,因为EGLSurface和EGLContext 切换相关的开销很大。


上面两种方式来实现RTT都有不同的问题,所以我们考虑使用帧缓冲区对象来实现RTT。


帧缓冲区对象支持如下操作:

1、使用OpenGL ES的API创建帧缓冲区对象。

2、一个EGLContext 中可以创建多个帧缓冲区对象,免去切换的操作。

3、帧缓冲区对象可以连接到 屏幕外颜色、深度、模版缓冲区 和 纹理。(FrameBufferObject 和 RenderBuffer/Texture2D 连接)

4、可以在多个帧缓冲区之间共享颜色、深度、模版缓冲区

5、帧缓冲区对象可以直接连接纹理,避免复制操作。

6、在帧缓冲区之间复制并使帧缓冲区内容失效


下面开始学习使用帧缓冲区对象

首先知道的是,帧缓冲区对象只是一个缓冲区对象,那么这个缓冲区中的数据,要在哪里呈现出来呢?

那就要提到帧缓冲区的三个附着点,颜色附着、深度附着、模版附着。我们只要指定一个 纹理,然后附着到颜色附着点上,那么帧缓冲区的数据都全部到这个纹理上去了,然后我们再渲染出这个纹理来,或者存为一个文件也可以。转自http://blog.csdn.net/huutu http://www.thisisgame.com.cn


至于深度附着、模版附着。可以先查看之前的文章介绍,了解深度缓冲、模版缓冲的作用。

OpenGL ES 学习教程(十二) DEPTH_TEST(深度缓冲测试)

OpenGL ES 学习教程(十三) Stencil_TEST(模板缓冲测试)


好,下面开始使用帧缓冲区对象。


首先需要查询当前设备的GLES实现所支持的最大帧缓冲区尺寸

//查询当前GLES实现所支持的最大的RenderBufferSize,就是尺寸
glGetIntegerv(GL_MAX_RENDERBUFFER_SIZE, &m_maxRenderBufferSize);//如果我们设定的图片尺寸超过了GLES实现所支持的尺寸,就抛出错误
if ((m_maxRenderBufferSize <= m_textureWidth) || (m_maxRenderBufferSize <= m_textureHeight))
{return;
}

然后创建帧缓冲区对象

glGenFramebuffers(1, &m_frameBuffer);

然后产生一个纹理对象,并且设置纹理参数

glGenTextures(1, &m_texture);glBindTexture(GL_TEXTURE_2D, m_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, m_textureWidth, m_textureHeight, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, NULL);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

然后将纹理对象 连接到 帧缓冲区对象的颜色附着点

glBindFramebuffer(GL_FRAMEBUFFER, m_frameBuffer);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_texture, 0);

然后检测帧缓冲区完整性,如果完整的话就开始进行绘制

GLenum tmpStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (tmpStatus == GL_FRAMEBUFFER_COMPLETE)
{glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);glViewport(0, 0, m_width, m_height);{//model;glm::mat4 model = glm::mat4(1.0f);//Viewglm::mat4 view = glm::lookAt(glm::vec3(0, 0, 10), glm::vec3(0, 0, 0), glm::vec3(0, 1, 0));//透视glm::mat4 proj = glm::perspective(glm::radians(60.0f), 1.0f, 0.3f, 1000.0f);proj = proj*view*model;m_program.begin();{glm::vec3 pos[] ={glm::vec3(-5.0f, -5.0f, 0.0f),glm::vec3(5.0f, -5.0f, 0.0f),glm::vec3(0.0f, 5.0f, 0.0f),};glm::vec4 color[] ={glm::vec4(colorX, colorY, colorZ, 1),glm::vec4(colorZ, colorX, colorY, 1),glm::vec4(colorY, colorZ, colorX, 1),};colorX += 0.001f;if (colorX > 1) colorX = 0;colorY += 0.002f;if (colorY > 1) colorY = 0;colorZ += 0.003f;if (colorZ > 1) colorZ = 0;glUniformMatrix4fv(m_program.m_mvp, 1, false, &proj[0][0]);glVertexAttribPointer(m_program.m_position, 2, GL_FLOAT, false, sizeof(glm::vec3), pos);glVertexAttribPointer(m_program.m_color, 4, GL_FLOAT, false, sizeof(glm::vec4), color);glDrawArrays(GL_TRIANGLES, 0, 3);}m_program.end();}

这里是绘制了一个颜色渐变的三角形,到帧缓冲区中。然后GLES会把这一帧的数据,就是这个颜色渐变的三角形 指定到创建的纹理中。

转自http://blog.csdn.net/huutu http://www.thisisgame.com.cn

绘制完毕后,将当前绑定的帧缓冲区重置为窗口系统提供的帧缓冲区,开始把创建的纹理,绘制出来。

GLenum tmpStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (tmpStatus == GL_FRAMEBUFFER_COMPLETE)
{......绘制到帧缓冲区对象中......glBindFramebuffer(GL_FRAMEBUFFER, GL_NONE);glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);glBindTexture(GL_TEXTURE_2D, m_texture);{orientationX += 3.0f;orientationY += 4.0f;orientationZ += 5.0f;//model;glm::mat4 trans = glm::translate(glm::vec3(3, 0, 0)); //向x正反向移动2个单位;glm::mat4 rotation = glm::eulerAngleYXZ(glm::radians(orientationX), glm::radians(orientationY), glm::radians(orientationZ));glm::mat4 scale = glm::scale(glm::vec3(2.0f, 2.0f, 2.0f));glm::mat4 model = trans*scale*rotation; //一定要先trans,然后再其它;先缩放,然后再移动,那么移动的位置也被缩放了。先移动再缩放就不会放大移动的位置;//Viewglm::mat4 view = glm::lookAt(glm::vec3(0, 0, 10), glm::vec3(0, 0, 0), glm::vec3(0, 1, 0));//透视glm::mat4 proj = glm::perspective(glm::radians(60.0f), (float)m_width / m_height, 0.3f, 1000.0f);proj = proj*view*model;m_program_1.begin();{glm::vec3 pos[] ={//Frontglm::vec3(-1.0f, -1.0f, 1.0f),glm::vec3(1.0f, -1.0f, 1.0f),glm::vec3(1.0f, 1.0f, 1.0f),glm::vec3(-1.0f, -1.0f, 1.0f),glm::vec3(1.0f, 1.0f, 1.0f),glm::vec3(-1.0f, 1.0f, 1.0f),//backglm::vec3(-1.0f, -1.0f, -1.0f),glm::vec3(1.0f, -1.0f, -1.0f),glm::vec3(1.0f, 1.0f, -1.0f),glm::vec3(-1.0f, -1.0f, -1.0f),glm::vec3(1.0f, 1.0f, -1.0f),glm::vec3(-1.0f, 1.0f, -1.0f),//leftglm::vec3(-1.0f, -1.0f, -1.0f),glm::vec3(-1.0f, -1.0f, 1.0f),glm::vec3(-1.0f, 1.0f, 1.0f),glm::vec3(-1.0f, -1.0f, -1.0f),glm::vec3(-1.0f, 1.0f, 1.0f),glm::vec3(-1.0f, 1.0f, -1.0f),//rightglm::vec3(1.0f, -1.0f, -1.0f),glm::vec3(1.0f, -1.0f, 1.0f),glm::vec3(1.0f, 1.0f, 1.0f),glm::vec3(1.0f, -1.0f, -1.0f),glm::vec3(1.0f, 1.0f, 1.0f),glm::vec3(1.0f, 1.0f, -1.0f),//upglm::vec3(-1.0f, 1.0f, 1.0f),glm::vec3(1.0f, 1.0f, 1.0f),glm::vec3(1.0f, 1.0f, -1.0f),glm::vec3(-1.0f, 1.0f, 1.0f),glm::vec3(1.0f, 1.0f, -1.0f),glm::vec3(-1.0f, 1.0f, -1.0f),//downglm::vec3(-1.0f, -1.0f, 1.0f),glm::vec3(1.0f, -1.0f, 1.0f),glm::vec3(1.0f, -1.0f, -1.0f),glm::vec3(-1.0f, -1.0f, 1.0f),glm::vec3(1.0f, -1.0f, -1.0f),glm::vec3(-1.0f, -1.0f, -1.0f),};glm::vec2 uv[] ={//frontglm::vec2(0, 0),glm::vec2(1, 0),glm::vec2(1, 1),glm::vec2(0, 0),glm::vec2(1, 1),glm::vec2(0, 1),//backglm::vec2(0, 0),glm::vec2(1, 0),glm::vec2(1, 1),glm::vec2(0, 0),glm::vec2(1, 1),glm::vec2(0, 1),//leftglm::vec2(0, 0),glm::vec2(1, 0),glm::vec2(1, 1),glm::vec2(0, 0),glm::vec2(1, 1),glm::vec2(0, 1),//rightglm::vec2(0, 0),glm::vec2(1, 0),glm::vec2(1, 1),glm::vec2(0, 0),glm::vec2(1, 1),glm::vec2(0, 1),//topglm::vec2(0, 0),glm::vec2(1, 0),glm::vec2(1, 1),glm::vec2(0, 0),glm::vec2(1, 1),glm::vec2(0, 1),//downglm::vec2(0, 0),glm::vec2(1, 0),glm::vec2(1, 1),glm::vec2(0, 0),glm::vec2(1, 1),glm::vec2(0, 1)};glm::vec4 color[] ={//Frontglm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),//backglm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),//leftglm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),//rightglm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),//upglm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),glm::vec4(1, 1, 1, 0.4),//downglm::vec4(1, 1, 1, 1),glm::vec4(1, 1, 1, 1),glm::vec4(1, 1, 1, 1),glm::vec4(1, 1, 1, 1),glm::vec4(1, 1, 1, 1),glm::vec4(1, 1, 1, 1),};glUniformMatrix4fv(m_program_1.m_mvp, 1, false, &proj[0][0]);glVertexAttribPointer(m_program_1.m_position, 3, GL_FLOAT, false, sizeof(glm::vec3), pos);glVertexAttribPointer(m_program_1.m_uv, 2, GL_FLOAT, false, sizeof(glm::vec2), uv);glVertexAttribPointer(m_program_1.m_color, 4, GL_FLOAT, false, sizeof(glm::vec4), color);glDrawArrays(GL_TRIANGLES, 0, 6 * 6);}m_program_1.end();}eglSwapBuffers(m_EGLDisplay, m_EGLSurface);	
}

有一点注意,我们创建的帧缓冲区对象,双缓冲这个东西是没用的。双缓冲只是用于窗口系统创建的帧缓冲区。

所以第二次绘制,也就是绘制纹理的时候,要记得加上  eglSwapBuffers 双缓冲切换。

转自http://blog.csdn.net/huutu http://www.thisisgame.com.cn

最终效果如下图



当然也可以把纹理 附着到 帧缓冲区的深度附着点。然后渲染深度纹理。

和上面的区别是设置纹理参数的时候有不同

glGenTextures(1, &m_texture);glBindTexture(GL_TEXTURE_2D, m_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, m_textureWidth, m_textureHeight, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, NULL);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);glGenTextures(1, &m_texture_depth);glBindTexture(GL_TEXTURE_2D, m_texture_depth);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, m_textureWidth, m_textureHeight, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, NULL);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

最终效果如下图:



示例项目下载地址:

RenderToTexture:

http://pan.baidu.com/s/1qYjKPEO 提取码:hp4h



DepthTexture:

http://pan.baidu.com/s/1hst49CS  提取码:twea


这篇关于OpenGL ES 学习教程(十四) 帧缓冲区对象(FBO) 实现渲染到纹理(Render To Texture/RTT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/649262

相关文章

JVM上篇:内存与垃圾回收篇-08-对象实例化及直接内存

笔记来源:尚硅谷 JVM 全套教程,百万播放,全网巅峰(宋红康详解 java 虚拟机) 文章目录 8. 对象实例化及直接内存8.1. 对象实例化8.1.1. 创建对象的方式8.1.2. 创建对象的步骤1. 判断对象对应的类是否加载、链接、初始化2. 为对象分配内存3. 处理并发问题4. 初始化分配到的内存5. 设置对象的对象头6. 执行 init 方法进行初始化 8.2. 对象内存

力扣题/图论/实现 Trie (前缀树)

实现 Trie (前缀树) 力扣原题 Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补全和拼写检查。 请你实现 Trie 类: Trie() 初始化前缀树对象。 void insert(String word) 向前缀树中插入字符串 word 。 boolean search(Str

Delphi5实现主要——明细型数据库应用

文章目录 效果图主要——明细型数据库特点 数据库实现方式完整代码 效果图 主要——明细型数据库 在Delphi中,主要——明细型数据库是一种数据库应用程序的设计模式,它涉及到多个数据库表之间的关联操作,以实现对复杂数据结构的有效管理。这种设计模式特别适用于需要展示和管理具有一对多或多对多关系的数据集的场景。 特点 数据表关联:主要——明细型数据库应用程序通常包含至少

【UI基础】——提示框和警示框的实现

前期工作      1、添加“jquery-easyui-1.3.2”文件夹       刚建立解决方案的时候“Content”文件夹下是没有“jquery-easyui-1.3.2”文件夹的,所以解决方案里是没有easyui的引用,提示框的效果需要通过easyui的引用才能达到。所以建立解决方案后需要从已有的系统(如:ITOO.UINonQueryProperties.Client)里复

Linux的初次学习

1. 什么是Linux? Linux是一种开源的类Unix操作系统,广泛应用于服务器、桌面和嵌入式系统。它的内核由Linus Torvalds于1991年首次发布,现已发展成为一个庞大的社区项目。 2. 常用Linux命令 2.1 文件和目录操作 查看当前目录 : pwd 列出目录内容 : ls -l 创建新目录 : mkdir my_directory 进入目录 : cd my_

synchronized——对象锁

synchronized的中文意思是同步的,在Java语言的它是关键字,可以用来给对象和方法或者代码加锁,当它封锁某一块代码或方法的时候,其他线程是不能访问调用这一块代码或方法的。   示例: public static synchronized int generate(String tableName){使用Java中synchronized方法解决线程同步问题

UnrealEngine学习(01):安装虚幻引擎

1. 下载安装 Epic Games 目前下载UE引擎需要先下载Epic Games,官网为我们提供了下载路径: https://www.unrealengine.com/zh-CN/downloadhttps://www.unrealengine.com/zh-CN/download 我们点击图中步骤一即可进行下载。 注释:Unreal Engine 是开源的,对源码感兴趣的朋友可以去

海康VisionMaster使用学习笔记17-定位项目误差分析及精度提高

定位问题排查步骤 机构及成像排查 标定过程排查 标定数据质量排查 标定结果排查 示教过程排查 注意事项总结

基于FPGA的SD NAND Flash数据读写实现

1、存储芯片分类          目前市面上的存储芯片,大致可以将其分为3大类: ① EEPROM         EEPROM (Electrically Erasable Programmable read only memory)是指带电可擦可编程只读存储器,是一种掉电后数据不丢失的存储芯片。EEPROM 可以在电脑上或专用设备上擦除已有信息,重新编程。         这类产

新手小白Ubuntu18.04超详细安装教程

1、Ubuntu18.04系统下载地址 Ubuntu18.04下载地址 直接下载桌面版 2、Ubuntu18.04安装 (1)打开VMware虚拟机 文件—>新建虚拟机—>选择典型 (2)选择稍后安装系统 (3)选择linux系统,其他版本64位 (4)填写虚拟机名称和虚拟机存放位置,默认是存放在C盘,不建议存放在C盘 (5)设置系统磁盘大小,可以根据自己情况来设置,我这里设置为5