[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-5 刚体的加速度与角加速度

本文主要是介绍[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-5 刚体的加速度与角加速度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
.

食用方法
求解逻辑:速度与加速度都是在知道角速度与角加速度的前提下——旋转运动更重要
所求得的速度表达-需要考虑是否为刚体相对固定点!
旋转矩阵?转换矩阵?有什么意义和性质?——与角速度与角加速度的关系
务必自己推导全部公式,并理解每个符号的含义

机构运动学与动力学分析与建模 Ch00-5 刚体的加速度与角加速度

  • 5. 运动刚体的加速度与角加速度
    • 5.1 矢量的速度与加速度
      • 5.1.1 欧拉角表示矢量的角加速度
    • 5.2 点的速度与加速度
      • 5.2.1 欧拉角表示角加速度
    • 5.2.2 欧拉参数表示角加速度


5. 运动刚体的加速度与角加速度

5.1 矢量的速度与加速度

矢量的速度与加速度,不同于点的速度与加速度——描述该矢量在对应方向上的延长与收缩情况(模值的变大与减小):
对于矢量的速度而言,有:
R ⃗ V e c t o r F = [ Q M F ] R ⃗ V e c t o r M ⇒ R ⃗ ˙ V e c t o r F = [ Q ˙ M F ] R ⃗ V e c t o r M + [ Q M F ] R ⃗ ˙ V e c t o r M = [ Q M F ] R ⃗ ˙ V e c t o r M + ω ⃗ ~ F [ Q M F ] R ⃗ V e c t o r M \vec{R}_{\mathrm{Vector}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M} \\ \Rightarrow \dot{\vec{R}}_{\mathrm{Vector}}^{F}=\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}=\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M} R VectorF=[QMF]R VectorMR ˙VectorF=[Q˙MF]R VectorM+[QMF]R ˙VectorM=[QMF]R ˙VectorM+ω ~F[QMF]R VectorM
对于矢量的加速度而言,有:
R ⃗ ˙ V e c t o r F = [ Q M F ] R ⃗ ˙ V e c t o r M + ω ⃗ ~ F [ Q M F ] R ⃗ V e c t o r M ⇒ R ⃗ ¨ V e c t o r F = [ Q ˙ M F ] R ⃗ ˙ V e c t o r M + [ Q M F ] R ⃗ ¨ V e c t o r M + ω ⃗ ~ ˙ F [ Q M F ] R ⃗ V e c t o r M + ω ⃗ ~ F [ Q ˙ M F ] R ⃗ V e c t o r M + ω ⃗ ~ F [ Q M F ] R ⃗ ˙ V e c t o r M ⇒ R ⃗ ¨ V e c t o r F = ω ⃗ ~ F [ Q M F ] R ⃗ ˙ V e c t o r M + [ Q M F ] R ⃗ ¨ V e c t o r M + ω ⃗ ~ ˙ F [ Q M F ] R ⃗ V e c t o r M + ω ⃗ ~ F ω ⃗ ~ ˙ F [ Q M F ] R ⃗ V e c t o r M + ω ⃗ ~ F [ Q M F ] R ⃗ ˙ V e c t o r M ⇒ R ⃗ ¨ V e c t o r F = a ⃗ V e c t o r F + 2 ω ⃗ ~ F v ⃗ V e c t o r F + ω ⃗ ~ ˙ F R ⃗ V e c t o r F + ω ⃗ ~ F ω ⃗ ~ F R ⃗ V e c t o r F \dot{\vec{R}}_{\mathrm{Vector}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M} \\ \Rightarrow \ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \ddot{\vec{R}}_{\mathrm{Vector}}^{M}+\dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M} \\ \Rightarrow \ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \ddot{\vec{R}}_{\mathrm{Vector}}^{M}+\dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M} \\ \Rightarrow \ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\vec{a}_{\mathrm{Vector}}^{F}+2\tilde{\vec{\omega}}^F\vec{v}_{\mathrm{Vector}}^{F}+\dot{\tilde{\vec{\omega}}}^F\vec{R}_{\mathrm{Vector}}^{F}+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\vec{R}_{\mathrm{Vector}}^{F} R ˙VectorF=[QMF]R ˙VectorM+ω ~F[QMF]R VectorMR ¨VectorF=[Q˙MF]R ˙VectorM+[QMF]R ¨VectorM+ω ~˙F[QMF]R VectorM+ω ~F[Q˙MF]R VectorM+ω ~F[QMF]R ˙VectorMR ¨VectorF=ω ~F[QMF]R ˙VectorM+[QMF]R ¨VectorM+ω ~˙F[QMF]R VectorM+ω ~Fω ~˙F[QMF]R VectorM+ω

这篇关于[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-5 刚体的加速度与角加速度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/644050

相关文章

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异