拿捏!相关性分析,一键出图!皮尔逊、斯皮尔曼、肯德尔、最大互信息系数(MIC)、滞后相关性分析,直接运行!独家可视化程序!

本文主要是介绍拿捏!相关性分析,一键出图!皮尔逊、斯皮尔曼、肯德尔、最大互信息系数(MIC)、滞后相关性分析,直接运行!独家可视化程序!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

适用平台:Matlab2020及以上

相关性分析是一种统计方法,用于衡量两个或多个变量之间的关系程度。通过相关性分析,我们可以了解变量之间的相互关系、依赖性,以及它们是如何随着彼此的变化而变化的。相关性分析通常包括计算相关系数或其他衡量关联度的指标。

①量化特征之间的关联程度:通过相关系数的值,我们可以判断它们的关系是强烈的、中等还是弱。

②特征降维:在大规模数据集中,相关性分析可以帮助我们过滤掉与目标序列关系较弱的变量,从而聚焦于关键的特征。

降维的方法:皮尔逊(Pearson)、斯皮尔曼(Spearman)、肯德尔(Kendall)、最大互信息系数(MIC)、滞后相关性。分别绘制出相关性矩阵,并且矩阵中每个值我们都用饼图表示,看着更加高大上!加深审稿人对文章的好感。

下面分别介绍这几种相关性分析的特点:

皮尔逊相关系数:皮尔逊相关系数衡量的是两个变量之间的线性关系。它通过计算协方差和两个变量的标准差来完成。皮尔逊相关系数在处理线性关系强的数据时非常有效,取值范围在 -1 到 1 之间,正值表示正相关,负值表示负相关,0 表示无关。

斯皮尔曼相关系数:斯皮尔曼相关系数是一种基于秩次的非参数方法,用于衡量两个变量之间的单调关系。首先将变量的原始数据转化为秩次,然后计算秩次的皮尔逊相关系数。适用于非线性关系,对异常值不敏感,取值范围也在 -1 到 1 之间。

肯德尔相关系数:计算过程类似斯皮尔曼相关系数,肯德尔相关系数也是基于秩次的非参数方法。它测量的是两个变量的等级之间的一致性程度,而不是直接测量它们的秩次之间的线性关系。适用于非线性关系,对异常值不敏感,常用于秩次数据的相关性分析。

最大互信息系数(MIC):最大互信息系数是一种非参数方法,用于测量两个变量之间的非线性关系。它通过将数据空间划分为网格,并计算每个网格中的互信息来完成。对于非线性关系的探测性能较好,但计算较复杂。

滞后相关性:滞后相关性衡量的是两个变量之间在时间上的延迟关系。通过计算变量在不同时间点上的相关性来确定它们是否存在滞后关系。适用于时间序列数据,能够揭示时间上的因果关系。

总结:上述方法都有其适用的场景和局限性。选择哪种方法取决于你们的数据特点以及你的侧重点问题。线性相关性可以使用皮尔逊相关系数,非线性或秩次相关性可以考虑斯皮尔曼和肯德尔相关系数。滞后相关性适用于时间序列数据,而MIC较适合处理非线性关系。

部分代码:

%% 计算互相关系数(滞后相关性)% 来自公众号《创新优化及预测代码》
n2=10; %滞后时序
y=data(:,end);
x=data(:,1:end-1);
%计算x在滞后或超前0-10个时段下与y的相关性
for i=1:size(x,2)croc(:,i)=crosscorr(y,x(:,i),'NumLags',n2);
end
croc=croc';% croc中行表示变量,列表述滞后序列-n2,-n2+1,...,0,1,...,n2-1,n2 下的x与y的相关系数%% 绘制热力图
[N, D]=size(data);%% 皮尔逊相关系数 % 来自公众号《创新优化及预测代码》
% 绘制皮尔逊相关系数二维图,使用hsv颜色映射
figure;
imagesc(pearson_corr);
colorbar;
% 颜色映射
color = hsv(200);
colormap(color(30:end-30,:));
title('皮尔逊相关系数');
xlabel('特征');
ylabel('特征');% 在图中添加皮尔逊相关系数的标签
for i = 1:size(pearson_corr, 1)for j = 1:size(pearson_corr, 2)text(j, i, num2str(pearson_corr(i, j), '%.2f'), 'Color', 'k', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle');end
end% 饼图 % 来自公众号《创新优化及预测代码》
pieplot(pearson_corr);
colormap(color(30:end-30,:));%% 绘制肯德尔相关系数二维图,使用Jet颜色映射 % 来自公众号《创新优化及预测代码》
figure;
imagesc(kendall_corr);
colorbar;
color = jet(200);
colormap(color(60:end-50,:));
title('肯德尔相关系数');
xlabel('特征');
ylabel('特征');% 在图中添加肯德尔相关系数的标签
for i = 1:size(kendall_corr, 1)for j = 1:size(kendall_corr, 2)text(j, i, num2str(kendall_corr(i, j), '%.2f'), 'Color', 'k', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle');end
end% 饼图
pieplot(kendall_corr);
colormap(color(60:end-50,:));

这篇关于拿捏!相关性分析,一键出图!皮尔逊、斯皮尔曼、肯德尔、最大互信息系数(MIC)、滞后相关性分析,直接运行!独家可视化程序!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/631033

相关文章

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Mysql 驱动程序的程序小结

《Mysql驱动程序的程序小结》MySQL驱动程序是连接应用程序与MySQL数据库的重要组件,根据不同的编程语言和应用场景,MySQL提供了多种驱动程序,下面就来详细的了解一下驱动程序,感兴趣的可以... 目录一、mysql 驱动程序的概念二、常见的 MySQL 驱动程序1. MySQL Connector

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse