【验证码识别专栏】人均通杀点选验证码!Yolov5 + 孪生神经网络 or 图像分类 = 高精模型

本文主要是介绍【验证码识别专栏】人均通杀点选验证码!Yolov5 + 孪生神经网络 or 图像分类 = 高精模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

00

声明

本文章中所有内容仅供学习交流使用,不用于其他任何目的,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!

本文章未经许可禁止转载,禁止任何修改后二次传播,擅自使用本文讲解的技术而导致的任何意外,作者均不负责,若有侵权,请在公众号【K哥爬虫】联系作者立即删除!

前言

近期有群友反馈,不知道如何训练点选验证码,之前也有不少粉丝问过相关问题,众所周知,K哥一向会尽力满足粉丝们的需求,现在特此推出《验证码识别专栏》,今后将输出相关文章,充实知识体系:

01

孪生神经网络简介

简单来说,孪生神经网络(Siamese network)就是“连体的神经网络”,神经网络的“连体”是通过共享权值来实现的,如下图所示 :

7mWVSh.png

孪生神经网络是一种特殊的神经网络结构,由两个或多个相同的子网络组成,这些子网络共享相同的权重和参数。其设计灵感来源于孪生兄弟或姐妹之间的相似性。孪生神经网络主要用于解决比较和相似性度量的问题。它可以将两个输入进行比较,并输出一个度量值,表示它们之间的相似性或差异程度。通俗来说,就是不同的人写了同一个汉字,将其中随机的二者拿出来进行对比,判断他们写的是不是同一个汉字,原理就是通过一个神经网络进行特征提取再进行比较, 通过 Loss 的计算,评价两个输入的相似度 。大家可以简单了解一下它的大致过程:

7mSkwb.png

孪生网络中的 LOSS 计算

对于孪生神经网络而言,其具有两个输入。

当两个输入指向同一个类型的图片时,此时标签为 1。

当两个输入指向不同类型的图片时,此时标签为 0。

然后将网络的输出结果和真实标签进行交叉熵运算,就可以作为最终的 loss 了。

比如,当我们输入下面俩个的时候,我们希望网络给我们输出 1:

7mS0XO.jpg 7mSlmQ.png

当我们输入以下俩个的时候,我们希望网络给我们输出 0:

7mSErc.jpg 7mS7hf.png

当输出 0 或者 1 的时候,我们将会与预测结果求交叉熵,进而输出相似度,这便是孪生神经网络的奇妙之处。

YOLO目标检测

YOLO 是目标检测模型。 目标检测是计算机视觉中比较简单的任务,用来在一张图篇中找到某些特定的物体。附上一张图,让大家直观的感受一下:

7m1CTO.jpg

YOLO 检测速度非常快。因为检测问题是回归问题,所以不需要复杂的管道。它比 “R-CNN” 快 1000 倍,比 “Fast R-CNN” 快 100 倍。

YOLO 能够处理实时视频,延迟非常小,连 25 毫秒都不到。精度也是以前实时系统的 2 倍多。更为重要的是 YOLO 遵循“端到端深度学习”的实践。

CNN 图像分类

在计算机视觉中,我们有一个卷积神经网络,它非常适用于计算机视觉任务,例如图像分类、对象检测、图像分割等等。卷积神经网络 (CNN)是一种用于处理图像的神经网络,这种类型的神经网络从图像中获取输入并从图像中提取特征,并提供可学习的参数以有效地进行分类、检测和更多任务。

我们使用称为“过滤器”的东西从图像中提取特征,我们使用不同的过滤器从图像中提取不同的特征。让我们举个例子,你正在构建一个分类模型来检测图像是猫还是非猫。因此,我们有不同的过滤器用于从图像中提取不同的特征,从而识别他是什么。所以大家可以把他理解成 OCR,输入一张图像,返回图像类别。

好了,大家对这 3 个东西相信也有一定的了解了,怎么使用,那我们就用实例来给大家讲解一下他们怎么使用。

点选验证码处理思路

我们附上几张,我们常见点选类验证码:

7m1JhQ.png

7m1XYf.jpg

7m1jdc.jpg

背景图的话千篇一律,没有什么区分,相比而言,对于点选问题,不同站点的验证码是不同的,基本有以下几类,我们通过不同的类别,来浅谈以下不同类型的点选我们应该如何处理。

类型一:yolo+CNN

① 有些网站的题目是在接口中返回 例如 wordList': ['并', '细', '什'] 这样的话,就很简单,我们把他从数组中取出来,就可以得到问题的答案。现在我们已经拿到了问题,就需要在图片中找到对应文字的坐标。我们这里采用 yolo+CNN(ddddocr),利用 labelimg 标注数据集生成 yolo 格式,labelimg 的安装:

pip install labelimg

新建 2 个文件夹:一个是存放图片的目录,另一个存放标签 class 的目录。

cmd 继续输入 labelimg 即可进入标注首页,按照下图片进行设置:7m1MOj.png
7m1fi5.png

标注的类名用英文,或者数字,这里我们只需要做文字检测,所以类名都写成 1 就可以了。标注完成会在你新建的目录下生成 class.txt 文件。

yolov5 下载地址:

https://codeload.github.com/ultralytics/yolov5/zip/refs/heads/master

下载好以后,导入 pycharm,打开 train.py,找到 data 这个位置,这是训练集的配置文件,上面显示 data/coco128.yaml:

7m1s7m.png

按照指定要求放我们的数据集,整体的路径框架就是这个样子,保存 yaml 配置文件与数据集存放位置一致就可以了。我们刚刚标注的导出的txt文件夹和原图文件夹按照下图去对应存放就可以,一定要与yaml保持一致

7mtQLe.jpg

走到这一步,我们的数据准备工作就完成了,接下来我们把我们 yolo 总文件夹打包,然后上传到 Auto 算力云平台(地址:https://www.autodl.com)去租用 gpu 去训练,(也自己本地可以安装 conda,安装 pytorch 去配置环境去训练,如何配置环境网上有教程,但是对电脑性能有一定要求,且很多框架要求必须是 N 卡),这里笔者为了所有人都可以训练,选择算力云平台去训练,这也是笔者平时为了节省效率采用的方式。

模型训练

进入以后,我们选择 T 卡即可,环境配置如下:

7mPBSq.png

选择 1.x 的版本都可以,推荐 1.7.0,创建以后我们进入即可,进入以后选择终端,输入 source /etc/network_turbo 回车进行镜像加速,然后输入指令,pip install -r requirements.txt 进行相关库的安装,如果遇上安装不上的,手动安装即可,和 win 的操作基本一致,我们所需的库安装完以后,敲入 python3 train.py 即可开始训练,训练完成会导出 pt 模型。

我们自己编写代码进行预测,这里咱已经贴心的写成接口形式了:

# 实例化 flask
app = Flask(__name__)
docr = solve()# 设置路由和处理函数(异步处理)
@app.route("/ocr", methods=["POST"])
def shibie():data = request.get_data().decode("utf-8")data = json.loads(data)# BASE64 图片beijing_data = data["beijing"]beijing_bytes = base64.b64decode(beijing_data)beijing_image = Image.open(BytesIO(beijing_bytes))results = model(beijing_image)boxes = results.xyxy[0][:, :4].tolist()output = []for box in boxes:x1, y1, x2, y2 = boxoutput.append([int(x1), int(y1), int(x2), int(y2)])return outputif __name__ == "__main__":# 导入 yolov5 模型定义和权重# 加载 yolo 模型luansheng = Siamese()model = torch.hub.load("./", "custom", path="best2.pt", source="local")model.conf = 0.5app.run(host="0.0.0.0", threaded=True, processes=1)

上面代码会给你一组数组,是图片上每个检测对象的左上坐标和左下坐标,你可以用它来求中心坐标~

当然,网上很多人会教你转成 onnx 去运行,下面教大家如何转成 onnx 模型,并且推理:

pt 模型转 onnx 模型代码 1(网传)

from ultralytics import YOLO
model = YOLO(r"suixin.pt")
model.export(format="onnx",imgsz=320,simplify=True)

pt 模型转 onnx 模型代码 2(本人在用的方式)

yolo 官方其他给我们已经准备好了转换的文件,我们进入我们下载的 yolo5 文件夹中,找到 export.pt:

7mPAyc.jpg

找到这三个位置,第一个位置一定不陌生,就是我们训练的时候已经配置好的那个文件,第二个就是我们训练结束以后的 pt 模型,第三个是选择导出的类型,我们这里输入 onnx 模型就行。

onnx 模型预测代码 1(网传,自测,大部分人跑不起来,可能第一步用别人的代码转就没转好):

from ultralytics import YOLO
model = YOLO(r"best2.onnx")
res = model.predict(source=r"bg1.jpg",show=False,save=True,imgsz=300)

onnx 模型预测代码 2(笔者本人在用的方式)这里如果要接口调用,自己仿照上面的格式去修改即可:

import os
import cv2
import time
import numpy as np
import onnxruntime# coco80 类别
CLASSES = ['1'] class YOLOV5:def __init__(self,onnxpath):self.onnx_session = onnxruntime.InferenceSession(onnxpath)self.input_name = self.get_input_name()self.output_name = self.get_output_name()#-------------------------------------------------------#   获取输入输出的名字#-------------------------------------------------------def get_input_name(self):input_name = []for node in self.onnx_session.get_inputs():input_name.append(node.name)return input_namedef get_output_name(self):output_name = []for node in self.onnx_session.get_outputs():output_name.append(node.name)return output_name#-------------------------------------------------------#   输入图像#-------------------------------------------------------def get_input_feed(self,img_tensor):input_feed = {}for name in self.input_name:input_feed[name] = img_tensorreturn input_feed#-------------------------------------------------------# 1.cv2 读取图像并 resize# 2.图像转 BGR2RGB 和 HWC2CHW# 3.图像归一化# 4.图像增加维度# 5.onnx_session 推理#-------------------------------------------------------def inference(self,img_path):img = cv2.imread(img_path)or_img = cv2.resize(img,(640,640))img = or_img[:,:,::-1].transpose(2,0,1)  # BGR2RGB 和 HWC2CHWimg = img.astype(dtype=np.float32)img /= 255.0img = np.expand_dims(img,axis=0)input_feed = self.get_input_feed(img)pred = self.onnx_session.run(None,input_feed)[0]return pred,or_img# dets: array [x,6] 6 个值分别为 x1,y1,x2,y2,score,class 
# thresh: 阈值
def nms(dets, thresh):x1 = dets[:, 0]y1 = dets[:, 1]x2 = dets[:, 2]y2 = dets[:, 3]#-------------------------------------------------------# 计算框的面积# 置信度从大到小排序#-------------------------------------------------------areas = (y2 - y1 + 1) * (x2 - x1 + 1)scores = dets[:, 4]keep = []index = scores.argsort()[::-1] while index.size > 0:i = index[0]keep.append(i)#-------------------------------------------------------# 计算相交面积# 1.相交# 2.不相交#-------------------------------------------------------x11 = np.maximum(x1[i], x1[index[1:]]) y11 = np.maximum(y1[i], y1[index[1:]])x22 = np.minimum(x2[i], x2[index[1:]])y22 = np.minimum(y2[i], y2[index[1:]])w = np.maximum(0, x22 - x11 + 1)                              h = np.maximum(0, y22 - y11 + 1) overlaps = w * h#-------------------------------------------------------# 计算该框与其它框的 IOU,去除掉重复的框,即 IOU 值大的框# IOU 小于 thresh 的框保留下来#-------------------------------------------------------ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)idx = np.where(ious <= thresh)[0]index = index[idx + 1]return keepdef xywh2xyxy(x):# [x, y, w, h] to [x1, y1, x2, y2]y = np.copy(x)y[:, 0] = x[:, 0] - x[:, 2] / 2y[:, 1] = x[:, 1] - x[:, 3] / 2y[:, 2] = x[:, 0] + x[:, 2] / 2y[:, 3] = x[:, 1] + x[:, 3] / 2return y# 过滤掉无用的框
def filter_box(org_box,conf_thres,iou_thres):#-------------------------------------------------------# 删除为 1 的维度# 删除置信度小于 conf_thres 的 BOX#-------------------------------------------------------org_box = np.squeeze(org_box)conf = org_box[..., 4] > conf_thresbox = org_box[conf == True]#-------------------------------------------------------# 通过 argmax 获取置信度最大的类别#-------------------------------------------------------cls_cinf = box[..., 5:]cls = []for i in range(len(cls_cinf)):cls.append(int(np.argmax(cls_cinf[i])))all_cls = list(set(cls))#-------------------------------------------------------# 分别对每个类别进行过滤# 1.将第 6 列元素替换为类别下标# 2.xywh2xyxy 坐标转换# 3.经过非极大抑制后输出的 BOX 下标# 4.利用下标取出非极大抑制后的 BOX#-------------------------------------------------------output = []for i in range(len(all_cls)):curr_cls = all_cls[i]curr_cls_box = []curr_out_box = []for j in range(len(cls)):if cls[j] == curr_cls:box[j][5] = curr_clscurr_cls_box.append(box[j][:6])curr_cls_box = np.array(curr_cls_box)# curr_cls_box_old = np.copy(curr_cls_box)curr_cls_box = xywh2xyxy(curr_cls_box)curr_out_box = nms(curr_cls_box,iou_thres)for k in curr_out_box:output.append(curr_cls_box[k])output = np.array(output)return outputdef draw(image,box_data):  #-------------------------------------------------------# 取整,方便画框#-------------------------------------------------------boxes = box_data[...,:4].astype(np.int32) scores = box_data[...,4]classes = box_data[...,5].astype(np.int32) for box, score, cl in zip(boxes, scores, classes):top, left, right, bottom = boxprint('class: {}, score: {}'.format(CLASSES[cl], score))print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),(top, left ),cv2.FONT_HERSHEY_SIMPLEX,0.6, (0, 0, 255), 2)if __name__=="__main__":onnx_path = 'best2.onnx'model = YOLOV5(onnx_path)output, or_img = model.inference('bg1.jpg')outbox = filter_box(output,0.5,0.5)draw(or_img,outbox)cv2.imwrite('res.jpg',or_img)

class: 1, score: 0.9501548409461975
box coordinate left,top,right,down: [439, 128, 549, 277]
class: 1, score: 0.9403117895126343
box coordinate left,top,right,down: [253, 288, 359, 434]
class: 1, score: 0.9271262884140015
box coordinate left,top,right,down: [103, 67, 215, 224]

上面代码运行输出结果:没错,就是我们需要的坐标,本地调试没问题,可以仿照我上面的写法,写成接口的形式。

类型识别

上面我们已经拿到了图片背景中的坐标,我们只需按照上面的坐标将图片进行切割下来即可。那么我们应该如何识别他到底是什么文字,或者这个图标呢?

这里的话我推荐 ddddocr 或者飞浆,也可以自己写一个网络去识别,这里我们选择 ddddocr 也是效率最高的去做就行。地址: GitHub - sml2h3/dddd_trainer: ddddocr训练工具 ,和 yolo 训练教程一样,也是直接打包 zip,上传到算力云,控制台进入项目主目录。

第一步,创建项目:

python app.py create {project_name}
or
python app.py create {project_name}  --single 

如果想要创建一个 CNN 的项目,则可以加上 --single 参数,CNN 项目识别比如图片类是什么分类的情况,比如图片上只有一个字,识别这张图是什么字(图上有多个字的不要用 CNN 模式),又比如分辨图片里是狮子还是兔子用 CNN 模式比较合适,大多数 OCR 需求请不要使用 --single。一句话总结:能看出文字内容的就不用 single,图像类别请用 single,例如腾讯六宫格图片,图标等。

例子: python app.py create tubiao --single(这里演示的是图标的训练,当然就用 single 了,如果是文字点选,那就没必要加)

第二步,准备数据:

图片均在同一个文件夹中,且命名为类似,其中 D:\img\ 文件夹为标注好的图片所在目录,可以为任意目录地址,这里是自己的图片目录,命名格式如下图。这里演示的是图标数据集,类名的话由自己去起:

7mPVU3.jpg

第三步,缓存数据:

这里以刚刚创建的 tubiao 项目和图片路径做演示,具体用的时候自己去替换自己的项目名就行了:

python app.py cache tubiao D:\img\         

第四步,开始训练:

python app.py train tubiao

训练完成,将会导出 onnx 模型和 json 文件,按照官网的案例去导入模型去识别就行,这里附上使用案例:

import ddddocrocr = ddddocr.DdddOcr(det=False, ocr=False, import_onnx_path="图标模型.onnx", charsets_path="charsets.json")with open('888e28774f815b01e871d474e5c84ff2.jpg', 'rb') as f:image_bytes = f.read()res = ocr.classification(image_bytes)
print(res)
####1#####  输出结果1  也就是我们标注的1

好了,至此我们的分类识别就完毕了,我们只需将目标检测返回的坐标在原图切割以后,传入这里去识别即可。这里附上完整流程代码:

import json
import torch
import base64
import ddddocr
from PIL import Image
from io import BytesIO
from flask import Flask, request, jsonify################################DDDDDDDDDDDDDDDD###################################################
class Ddddocr:def __init__(self):self.ocr = ddddocr.DdddOcr(det=False,ocr=False,import_onnx_path="2023-8-25/A1_0.984375_202_356000_2023-08-25-16-04-37.onnx",charsets_path="2023-8-25/charsets.json",)self.xy_ocr = ddddocr.DdddOcr(det=False, show_ad=False)def result_ocr(self, content, xy_list):img = Image.open(BytesIO(content))words = []for row in xy_list:x1, y1, x2, y2 = rowcrop = img.crop(row)img_byte = BytesIO()crop.save(img_byte, "png")word = self.ocr.classification(img_byte.getvalue())words.append(word)return dict(zip(words, xy_list))def resultocr(self, con, xylist):click_identify_result = self.result_ocr(con, xylist)img_xy = {}for key, xy in click_identify_result.items():  # 将字典中的结果和位置信息遍历img_xy[key] = (int((xy[0] + xy[2]) / 2),int((xy[1] + xy[3]) / 2),)return img_xy######################################flask#################################################
# 实例化 flask
app = Flask(__name__)
docr = Ddddocr()# 设置路由和处理函数(异步处理)
@app.route("/ocr", methods=["POST"])
def shibie():data = request.get_data().decode("utf-8")data = json.loads(data)beijing_data = data["beijing"]# 将字节流转换为 PIL 图像对象beijing_bytes = base64.b64decode(beijing_data)beijing_image = Image.open(BytesIO(beijing_bytes))results = model(beijing_image)boxes = results.xyxy[0][:, :4].tolist()output = []for box in boxes:x1, y1, x2, y2 = boxoutput.append([int(x1), int(y1), int(x2), int(y2)])bg_results = docr.resultocr(beijing_bytes, output)response_data = {"data": bg_results}return jsonify(response_data)if __name__ == "__main__":# 导入 yolov5 模型定义和权重# 加载 yolo 模型model = torch.hub.load("./", "custom", path="best.pt", source="local")# 定义权重文件model.conf = 0.5app.run(host="0.0.0.0", threaded=True, processes=1)

这里附上接口测试代码(多线程):

import time
import json
import base64
import requests
import threading
from PIL import Image
from io import BytesIOurl = "http://127.0.0.1:5000/ocr"
beijing_image = Image.open("8209bg.png")
beijing_bytes = BytesIO()
beijing_image.save(beijing_bytes, format="PNG")
beijing_data = base64.b64encode(beijing_bytes.getvalue()).decode("utf-8")data = {"beijing": beijing_data
}def send_request(url, data):response = requests.post(url, json=data)print(f"Response: {response.json()}")threads = []
for i in range(1):thread = threading.Thread(target=send_request, args=(url, data))threads.append(thread)thread.start()# 等待所有线程结束
for thread in threads:thread.join()#### Response: {'data': {'方': [175, 95], '沙': [101, 80], '理': [47, 18], '轻': [207, 26]}}

类型二:yolo + 孪生 Siamese

孪生就不介绍了,文章开头已经很明确了,刚刚我们第一种方式用的是 yolo + 分类识别,那么如果我们现在遇到题目是图片的我们应该怎么处理?当然我们也可以用类型一去处理他,既然他不给我题目文字,那么我们就用 ddddocr 去识别这个题目,那么就变成和类型一相同的处境了,我们拿到了题目和底图,自然就可以去识别这种情况的点选了。

这里我们讲第二种办法,用孪生去识别,就是用题目和切割出来的图像去匹配,看看哪个相似度高,我们就认为他俩是匹配的。

这里我们进入 git,克隆项目到本地:https://github.com/bubbliiiing/Siamese-pytorch

训练自己相似性比较的模型,将数据集按照如下格式进行摆放。

- image_background- character01- 0709_01.png- 0709_02.png- ……- character02- character03- ……

这里附一张我的标注图,方便大家理解:

7mPYyZ.jpg
7mPrUU.jpg

  1. 按上述格式放置数据集,放在根目录下的 dataset 文件夹下;
  2. 之后将 train.py 当中的 train_own_data 设置成 True;
  3. 运行 train.py 开始训练;
  4. 训练结束以后,会导出 pth 文件,按照文档进行相关操作即可。

算力云平台配置我们选择 PyTorch 1.7.0 Python 3.8(ubuntu18.04) 依旧是本地配置好以后,上传到服务器,安库,开训即可:

7mPJn7.jpg

训练好以后,我们进入 siamese.py 进行修改模型路径,这里主要注意 model_path 改为训练导出的模型,input_shape 为图片的大小:

class Siamese(object):_defaults = {#-----------------------------------------------------##   使用自己训练好的模型进行预测一定要修改 model_path#   model_path 指向 logs 文件夹下的权值文件#-----------------------------------------------------#"model_path"        : 'model_data/jyicon2.pth',#-----------------------------------------------------##   输入图片的大小。#-----------------------------------------------------#"input_shape"       : [60, 60],#--------------------------------------------------------------------##   该变量用于控制是否使用 letterbox_image 对输入图像进行不失真的 resize#   否则对图像进行 CenterCrop#--------------------------------------------------------------------#"letterbox_image"   : False,#-------------------------------##   是否使用 Cuda#   没有 GPU 可以设置成 False#-------------------------------#"cuda"              : False}

修改以后,打开 predict.py 输入图片路径,即可进行相似度对比。这里预测的操作,大家还是以 git 为主,讲的会比较详细。仿照上面的思路,接口传入图片以后,与分割的图片一一进行相似度匹配,拿出来即可,这里附上一段相似度比较代码。首先,需要在 simapy 将这个函数替换,以便可以返回相似度为整数:

    def detect_image(self, image_1, image_2):#---------------------------------------------------------##   在这里将图像转换成 RGB 图像,防止灰度图在预测时报错。#---------------------------------------------------------#image_1 = cvtColor(image_1)image_2 = cvtColor(image_2)#---------------------------------------------------##   对输入图像进行不失真的 resize#---------------------------------------------------#image_1 = letterbox_image(image_1, [self.input_shape[1], self.input_shape[0]], self.letterbox_image)image_2 = letterbox_image(image_2, [self.input_shape[1], self.input_shape[0]], self.letterbox_image)#---------------------------------------------------------##   归一化+添加上 batch_size 维度#---------------------------------------------------------#photo_1  = preprocess_input(np.array(image_1, np.float32))photo_2  = preprocess_input(np.array(image_2, np.float32))with torch.no_grad():#---------------------------------------------------##   添加上 batch 维度,才可以放入网络中预测#---------------------------------------------------#photo_1 = torch.from_numpy(np.expand_dims(np.transpose(photo_1, (2, 0, 1)), 0)).type(torch.FloatTensor)photo_2 = torch.from_numpy(np.expand_dims(np.transpose(photo_2, (2, 0, 1)), 0)).type(torch.FloatTensor)if self.cuda:photo_1 = photo_1.cuda()photo_2 = photo_2.cuda()#---------------------------------------------------##   获得预测结果,output 输出为概率#---------------------------------------------------#output = self.net([photo_1, photo_2])[0]output = torch.nn.Sigmoid()(output)# print(output)# 将相似度值转换为整数类型# similarity = round(output.item(), 2)# similarity_integer = int(similarity * 100)# 返回整数类型的相似度值# return similarity_integerreturn output
 def case_demo(con, xy_list, q1data, q2data, q3data):# 背景图img = con result = []# 计算题目 1 的相似度scores1 = []for row in xy_list: # xylist 为 yolo 检测后的坐标crop = img.crop(row)img_byte = BytesIO()crop.save(img_byte, "png")img_data = Image.open(img_byte).resize((60, 60))score = luansheng.detect_image(q1data, img_data)scores1.append(score)max_score_index1 = scores1.index(max(scores1))max_score_row1 = xy_list[max_score_index1]result.append(max_score_row1)  ..............................................................................# 依次匹配题目答案即可

识别结果

7mPjpI.png

这篇关于【验证码识别专栏】人均通杀点选验证码!Yolov5 + 孪生神经网络 or 图像分类 = 高精模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599155

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

SpringBoot整合kaptcha验证码过程(复制粘贴即可用)

《SpringBoot整合kaptcha验证码过程(复制粘贴即可用)》本文介绍了如何在SpringBoot项目中整合Kaptcha验证码实现,通过配置和编写相应的Controller、工具类以及前端页... 目录SpringBoot整合kaptcha验证码程序目录参考有两种方式在springboot中使用k

SpringBoot如何集成Kaptcha验证码

《SpringBoot如何集成Kaptcha验证码》本文介绍了如何在Java开发中使用Kaptcha生成验证码的功能,包括在pom.xml中配置依赖、在系统公共配置类中添加配置、在控制器中添加生成验证... 目录SpringBoot集成Kaptcha验证码简介实现步骤1. 在 pom.XML 配置文件中2.

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G