Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

本文主要是介绍Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

基于情感知识增强图卷积网络的基于方面的情感分析

Abstract

现有的研究大多集中在基于句子依存关系树的上下文词到aspect词的依存关系信息的学习上,缺乏对特定体的语境情感知识的挖掘。在本文中,作者提出了一种基于SenticNet的图卷积网络,以根据特定的方面来利用句子的情感依赖关系,称为语义GCN。
通过整合SenticNet的情感知识来构建图神经网络,以增强句子的依存关系图。
在此基础上,提出了一种新的情感增强图模型,该模型既考虑了上下文词与aspect词之间的依存关系,又考虑了观点词与aspect之间的情感信息

Model

在这里插入图片描述
模型组成:

  • 使用LSTM学习上下文表示
  • 利用GCN将句子的上下文表示和相应的情感增强图作为输入,捕获上下文词的潜在情感依赖(将情感词编码到依赖树中)
  • 将两个输出进行组合

启示

  • 模型很简单,将情感词的编码到依赖树中,代码也很简单能够实现,可以将加入到情感分析的任意一个模型中

这篇关于Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/594053

相关文章

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

智能工厂程序设计 之1 智能工厂都本俱的方面(Facet,Aspect和Respect)即智能依赖的基底Substrate 之1

Q1、昨天分别给出了三个智能工厂的 “面face”(里面inter-face,外面outer-face和表面surface) 以及每个“面face” 各自使用的“方”(StringProcessor,CaseFilter和ModeAdapter)  。今天我们将继续说说三个智能工厂的“方面” 。在展开之前先看一下三个单词:面向facing,取向oriented,朝向toword。理解这三个词 和

SIGMOD-24概览Part7: Industry Session (Graph Data Management)

👇BG3: A Cost Effective and I/O Efficient Graph Database in ByteDance 🏛机构:字节 ➡️领域: Information systems → Data management systemsStorage management 📚摘要:介绍了字节新提出的ByteGraph 3.0(BG3)模型,用来处理大规模图结构数据 背景

Redis缓存 自定义注解+aspect+反射技术实现

最近再给云随笔后台增加redis模块,突然发现spring-boot-starter-data-redis模块很不人性化,实现不了通用的方式,(当然,你也可以自己写个通用的CacheUtil来实现通用的方式),但由于本人非常的爱装逼,就在这里不讲解那种傻瓜式操作了,这里只讲干货,干到你不可置信的干货). 例如:这里我使用了它其中的RedisTemplate ,发现存到redis中后,数据

A Comprehensive Survey on Graph Neural Networks笔记

一、摘要-Abstract 1、传统的深度学习模型主要处理欧几里得数据(如图像、文本),而图神经网络的出现和发展是为了有效处理和学习非欧几里得域(即图结构数据)的信息。 2、将GNN划分为四类:recurrent GNNs(RecGNN), convolutional GNNs,(GCN), graph autoencoders(GAE), and spatial–temporal GNNs(S

MACS bdgdiff: Differential peak detection based on paired four bedGraph files.

参考原文地址:[http://manpages.ubuntu.com/manpages/xenial/man1/macs2_bdgdiff.1.html](http://manpages.ubuntu.com/manpages/xenial/man1/macs2_bdgdiff.1.html) 文章目录 一、MACS bdgdiff 简介DESCRIPTION 二、用法

Neighborhood Homophily-based Graph Convolutional Network

#paper/ccfB 推荐指数: #paper/⭐ #pp/图结构学习 流程 重定义同配性指标: N H i k = ∣ N ( i , k , c m a x ) ∣ ∣ N ( i , k ) ∣ with c m a x = arg ⁡ max ⁡ c ∈ [ 1 , C ] ∣ N ( i , k , c ) ∣ NH_i^k=\frac{|\mathcal{N}(i,k,c_{

Versioned Staged Flow-Sensitive Pointer Analysis

VSFS 1.Introduction2.Approach2.1.相关概念2.2.VSFS 3.Evaluation参考文献 1.Introduction 上一篇blog我介绍了目前flow-sensitive pointer analysis常用的SFS算法。相比IFDS-based方法,SFS显著通过稀疏分析提升了效率,但是其内部依旧有许多冗余计算,留下了很大优化空间。 以