SLAM导航机器人零基础实战系列:(二)ROS入门——8.理解roslaunch在大型项目中的作用

本文主要是介绍SLAM导航机器人零基础实战系列:(二)ROS入门——8.理解roslaunch在大型项目中的作用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SLAM导航机器人零基础实战系列:(二)ROS入门——8.理解roslaunch在大型项目中的作用

摘要                                          

ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便。我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS基础知识进行详细的讲解,给不熟悉ROS的朋友起到一个抛砖引玉的作用。本章节主要内容:

1.ROS是什么

2.ROS系统整体架构

3.在ubuntu16.04中安装ROS kinetic

4.如何编写ROS的第一个程序hello_world

5.编写简单的消息发布器和订阅器

6.编写简单的service和client

7.理解tf的原理

8.理解roslaunch在大型项目中的作用

9.熟练使用rviz

10.在实际机器人上运行ROS高级功能预览


温馨提示:

本篇文章已经收录在我最新出版的书籍《机器人SLAM导航核心技术与实战》,感兴趣的读者可以购买纸质书籍来进行更加深入和系统性的学习,购买链接如下:

点这里购买:《机器人SLAM导航核心技术与实战》购买链接


8.理解roslaunch在大型项目中的作用

(1)roslaunch的作用

在一个大型的机器人项目中,经常涉及到多个node协同工作,并且每个node都有很多可设置的parameter。比如我们的机器人miiboo_nav导航项目,涉及到地图服务节点、定位算法节点、运动控制节点、底盘控制节点、激光雷达数据获取节点等众多节点,和几百个影响着这些node行为模式的parameter。如果全部手动rosrun逐个启动node并传入parameter,工程的复杂程度将难以想象。所以这个时候就需要用roslaunch来解决问题,将需要启动的节点和需要设置的parameter全部写入一个*.launch文件,然后用roslaunch一次性的启动*.launch文件,这样所有的节点就轻而易举的启动了。miiboo_nav导航项目的miiboo_nav.launch文件内容如图28。

(图28)miiboo_nav导航项目的miiboo_nav.launch文件内容

(2)launch标签介绍

launch文件采用xml文本标记语言进行编写,对比较常用的标签进行介绍。

<launch>标签:

这个是顶层标签,所有的描述标签都要写在<launch></launch>之间。

<launch>
...
</launch> 

<node>标签:

这个是最常见的标签,每个node标签里包含了ROS图中节点的名称属性name、该节点所在的包名pkg、节点的类型type(type为可执行文件名称,如果节点用c++编写;type为*.py,如果节点用python编写)、调试属性output(如果output=“screen”,终端输出信息将被打印到当前控制台,而不是存入ROS日志文件)。

<node name=”xx” pkg=”xx” type=”xx” output=”xx”>
...
</node> 

<include>标签:

这个标签是用于导入另一个*.launch文件到当前文件。也就是说高层级的launch文件可以通过include的方法调用其它launch文件,这样可以使launch文件的组织方式更加模块化,便于移植与复用。

<include file=”$(find pkg_name)/launch/xx.launch”/>

<remap>标签:

这个标签是用于将topic的名称进行重映射, from中填入原来的topic名称,to中填入新的topic名称。<remap>标签根据放置在launch文件的层级不同,在相应的层级起作用。

<remap from=”orig_topic_name” to=”new_topic_name”/>

<param>标签:

这个标签用于在参数服务器中创建或设置一个指定名称的参数值。

<param name=”param_name” type=”xx” value=”xx”/>

<rosparam>标签:

这个标签用于从yaml文件中一次性导入大量参数到参数服务器中。

<rosparam command=”load” file=”$(find pkg_name)/path_to_file.yaml”/>

<arg>标签:

这个标签用于在launch文件中定义用于存储的临时变量,该标签定义的变量只在当前launch文件中使用。推荐使用第一种方式赋值,这样可以方便从命令行中传入参数。

<arg name=”xx” default=”xx”/>
或者
<arg name=”xx” value=”xx”/>

<group>标签:

这个标签用于将node批量划分到某个命名空间。便于大项目中节点的批量管理。

<group ns=”group_one”>
< node ... />
< node ... />
</group><group ns=”group_two”>
< node ... />
< node ... />
</group>

(3)launch的使用方法

首先在相应功能包目录下新建一个launch文件夹。

然后在launch文件夹中新建*.launch文件,并按照上面的launch标签规则编写好launch文件的内容。

最后在终端中用roslaunch命令启动launch文件,命令如下:

cd ~/catkin_ws/
source devel/setup.bash
roslaunch <pkg_name> <file_name.launch> 

特别说明,由于roslaunch命令会自动去启动roscore,所以不需要像之前使用rosrun那样特意先去手动启动roscore。

后记                

如果大家对博文的相关类容感兴趣,或有什么技术疑问,欢迎加QQ技术交流群(117698356

参考文献

[1] 张虎,机器人SLAM导航核心技术与实战[M]. 机械工业出版社,2022.

 购书链接:https://item.jd.com/13041503.html

下载更多资料:www.xiihoo.com

QQ技术讨论群: 117698356

B站视频教程:https://space.bilibili.com/66815220

Github源码:https://github.com/xiihoo/Books_Robot_SLAM_Navigation

Gitee源码(国内访问速度快):https://gitee.com/xiihoo-robot/Books_Robot_SLAM_Navigation

前言

编程基础篇

第1章 ROS入门必备知识

1.1 ROS简介 2

1.1.1 ROS的性能特色 2

1.1.2 ROS的发行版本 3

1.1.3 ROS的学习方法 3

1.2 ROS开发环境的搭建 3

1.2.1 ROS的安装 4

1.2.2 ROS文件的组织方式 4

1.2.3 ROS网络通信配置 5

1.2.4 集成开发工具 5

1.3 ROS系统架构 5

1.3.1 从计算图视角理解ROS架构 6

1.3.2 从文件系统视角理解ROS架构 7

1.3.3 从开源社区视角理解ROS架构 8

1.4 ROS调试工具 8

1.4.1 命令行工具 9

1.4.2 可视化工具 9

1.5 ROS节点通信 10

1.5.1 话题通信方式 12

1.5.2 服务通信方式 15

1.5.3 动作通信方式 19

1.6 ROS的其他重要概念 25

1.7 ROS 2.0展望 28

1.8 本章小结 28

第2章 C++编程范式

2.1 C++工程的组织结构 29

2.1.1 C++工程的一般组织结构 29

2.1.2 C++工程在机器人中的组织结构 29

2.2 C++代码的编译方法 30

2.2.1 使用g++编译代码 31

2.2.2 使用make编译代码 32

2.2.3 使用CMake编译代码 32

2.3 C++编程风格指南 33

2.4 本章小结 34

第3章 OpenCV图像处理

3.1 认识图像数据 35

3.1.1 获取图像数据 35

3.1.2 访问图像数据 36

3.2 图像滤波 37

3.2.1 线性滤波 37

3.2.2 非线性滤波 38

3.2.3 形态学滤波 39

3.3 图像变换 40

3.3.1 射影变换 40

3.3.2 霍夫变换 42

3.3.3 边缘检测 42

3.3.4 直方图均衡 43

3.4 图像特征点提取 44

3.4.1 SIFT特征点 44

3.4.2 SURF特征点 50

3.4.3 ORB特征点 52

3.5 本章小结 54

硬件基础篇

第4章 机器人传感器

4.1 惯性测量单元 56

4.1.1 工作原理 56

4.1.2 原始数据采集 60

4.1.3 参数标定 65

4.1.4 数据滤波 73

4.1.5 姿态融合 75

4.2 激光雷达 91

4.2.1 工作原理 92

4.2.2 性能参数 94

4.2.3 数据处理 96

4.3 相机 100

4.3.1 单目相机 101

4.3.2 双目相机 107

4.3.3 RGB-D相机 109

4.4 带编码器的减速电机 111

4.4.1 电机 111

4.4.2 电机驱动电路 112

4.4.3 电机控制主板 113

4.4.4 轮式里程计 117

4.5 本章小结 118

第5章 机器人主机

5.1 X86与ARM主机对比 119

5.2 ARM主机树莓派3B+ 120

5.2.1 安装Ubuntu MATE 18.04 120

5.2.2 安装ROS melodic 122

5.2.3 装机软件与系统设置 122

5.3 ARM主机RK3399 127

5.4 ARM主机Jetson-tx2 128

5.5 分布式架构主机 129

5.5.1 ROS网络通信 130

5.5.2 机器人程序的远程开发 130

5.6 本章小结 131

第6章 机器人底盘

6.1 底盘运动学模型 132

6.1.1 两轮差速模型 132

6.1.2 四轮差速模型 136

6.1.3 阿克曼模型 140

6.1.4 全向模型 144

6.1.5 其他模型 148

6.2 底盘性能指标 148

6.2.1 载重能力 148

6.2.2 动力性能 148

6.2.3 控制精度 150

6.2.4 里程计精度 150

6.3 典型机器人底盘搭建 151

6.3.1 底盘运动学模型选择 152

6.3.2 传感器选择 152

6.3.3 主机选择 153

6.4 本章小结 155

SLAM篇

第7章 SLAM中的数学基础

7.1 SLAM发展简史 158

7.1.1 数据关联、收敛和一致性 160

7.1.2 SLAM的基本理论 161

7.2 SLAM中的概率理论 163

7.2.1 状态估计问题 164

7.2.2 概率运动模型 166

7.2.3 概率观测模型 171

7.2.4 概率图模型 173

7.3 估计理论 182

7.3.1 估计量的性质 182

7.3.2 估计量的构建 183

7.3.3 各估计量对比 190

7.4 基于贝叶斯网络的状态估计 193

7.4.1 贝叶斯估计 194

7.4.2 参数化实现 196

7.4.3 非参数化实现 202

7.5 基于因子图的状态估计 206

7.5.1 非线性最小二乘估计 206

7.5.2 直接求解方法 206

7.5.3 优化方法 208

7.5.4 各优化方法对比 218

7.5.5 常用优化工具 219

7.6 典型SLAM算法 221

7.7 本章小结 221

第8章 激光SLAM系统

8.1 Gmapping算法 223

8.1.1 原理分析 223

8.1.2 源码解读 228

8.1.3 安装与运行 233

8.2 Cartographer算法 240

8.2.1 原理分析 240

8.2.2 源码解读 247

8.2.3 安装与运行 258

8.3 LOAM算法 266

8.3.1 原理分析 266

8.3.2 源码解读 267

8.3.3 安装与运行 270

8.4 本章小结 270

第9章 视觉SLAM系统

9.1 ORB-SLAM2算法 274

9.1.1 原理分析 274

9.1.2 源码解读 310

9.1.3 安装与运行 319

9.1.4 拓展 327

9.2 LSD-SLAM算法 329

9.2.1 原理分析 329

9.2.2 源码解读 334

9.2.3 安装与运行 337

9.3 SVO算法 338

9.3.1 原理分析 338

9.3.2 源码解读 341

9.4 本章小结 341

第10章 其他SLAM系统

10.1 RTABMAP算法 344

10.1.1 原理分析 344

10.1.2 源码解读 351

10.1.3 安装与运行 357

10.2 VINS算法 362

10.2.1 原理分析 364

10.2.2 源码解读 373

10.2.3 安装与运行 376

10.3 机器学习与SLAM 379

10.3.1 机器学习 379

10.3.2 CNN-SLAM算法 411

10.3.3 DeepVO算法 413

10.4 本章小结 414

自主导航篇

第11章 自主导航中的数学基础

11.1 自主导航 418

11.2 环境感知 420

11.2.1 实时定位 420

11.2.2 环境建模 421

11.2.3 语义理解 422

11.3 路径规划 422

11.3.1 常见的路径规划算法 423

11.3.2 带约束的路径规划算法 430

11.3.3 覆盖的路径规划算法 434

11.4 运动控制 435

11.4.1 基于PID的运动控制 437

11.4.2 基于MPC的运动控制 438

11.4.3 基于强化学习的运动控制 441

11.5 强化学习与自主导航 442

11.5.1 强化学习 443

11.5.2 基于强化学习的自主导航 465

11.6 本章小结 467

第12章 典型自主导航系统

12.1 ros-navigation导航系统 470

12.1.1 原理分析 470

12.1.2 源码解读 475

12.1.3 安装与运行 479

12.1.4 路径规划改进 492

12.1.5 环境探索 496

12.2 riskrrt导航系统 498

12.3 autoware导航系统 499

12.4 导航系统面临的一些挑战 500

12.5 本章小结 500

第13章 机器人SLAM导航综合实战

13.1 运行机器人上的传感器 502

13.1.1 运行底盘的ROS驱动 503

13.1.2 运行激光雷达的ROS驱动 503

13.1.3 运行IMU的ROS驱动 504

13.1.4 运行相机的ROS驱动 504

13.1.5 运行底盘的urdf模型 505

13.1.6 传感器一键启动 506

13.2 运行SLAM建图功能 506

13.2.1 运行激光SLAM建图功能 507

13.2.2 运行视觉SLAM建图功能 508

13.2.3 运行激光与视觉联合建图功能 508

13.3 运行自主导航 509

13.4 基于自主导航的应用 510

13.5 本章小结 511

附录A Linux与SLAM性能优化的探讨

附录B 习题

这篇关于SLAM导航机器人零基础实战系列:(二)ROS入门——8.理解roslaunch在大型项目中的作用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/589530

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言