线性代数 --- 为什么LU分解中L矩阵的行列式一定等于正负1?

2024-01-07 18:52

本文主要是介绍线性代数 --- 为什么LU分解中L矩阵的行列式一定等于正负1?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  以下是关于下三角矩阵L的行列式一定等于+-1的一些说明

笔者的一些话(写在最前面):

        这是一篇小文,是我写的关于求解矩阵行列式的一篇文章中的一部分。之所以把这一段专门提溜出来,是因为这一段相对于原文是可以完全独立的,也是因为我自认为这是原文中很精彩的一段论证。为了便于我自己后续翻阅和查找,也是为了给我CSDN文章里面凑数,这才有了这篇文章。

证明:在LU分解中,下三角矩阵L的行列式一定是\pm 1.

在证明之前,我这里先补充几条关于行列式的性质:

性质1:对于三角矩阵而言,不论是上三角矩阵还是下三角矩阵,其行列式的值都等于主对角线上元素的乘积。

        此处引用Gilbert strang的线性代数教科书《introduction to linear algebra》中,第251页处的一段关于矩阵行列式的相应说明:

        截图中第七条性质说:如果矩阵A是一个三角矩阵,则矩阵A的行列式等于其对角线上元素的乘积。

\mathbf{\left | A \right |=a_{11}*a_{22}*...*a_{nn}}

性质2:两个矩阵A,B的积AB的行列式|AB|等于这两个矩阵各自的行列式|A|和|B|的积,即:

\mathbf{\left | AB \right |=\left | A \right |\left | B \right |}

性质3:单位矩阵I的行列式为1。

性质4:对矩阵进行行与行之间的交换后,需要改变原矩阵行列式的正负号。

        在LU分解中,下三角阵L是高斯消元的逆过程,是多个消元矩阵E的逆矩阵E^{-1}的乘积(形如下图中的矩阵)。

        首先,根据上面说的性质1可知,所有消元矩阵E的逆矩阵E^{-1}的行列式等于其对角线上所有元素的乘积。又因为矩阵E^{-1}对角线上元素都是1,所以,E^{-1}的行列式一定等于1。此外,根据性质2,L的行列式等于多个E^{-1}的行列的乘积,所以,L的行列式必然等于1,即:

\left |L \right |=\left | {E_{1}}^{-1}\right |*\left | {E_{2}}^{-1}\right |*\left | {E_{3}}^{-1}\right |*...\left | {E_{n}}^{-1}\right |

        可是,如果对矩阵A进行高斯消元的过程中,遇到对角线上的元素为0的情况,就需要对矩阵进行行交换,则上式就会包含一些置换矩阵:

\left |L \right |=\left | {P_{1}}^{-1}\right |*\left | {E_{1}}^{-1}\right |*\left | {E_{2}}^{-1}\right |*\left | {E_{3}}^{-1}\right |*\left | {E_{4}}^{-1}\right |*\left | {P_{2}}^{-1}\right |...\left | {E_{n}}^{-1}\right |

        这种情况下计算出来的L矩阵可就不一定是标准的下三角矩阵了,比如说下面这个矩阵:

        这样一来就需要对L矩阵进行行交换,把他变成标准的下三角矩阵,以确保他的det等于1。而交换的过程需要用置换矩阵P记录下来,使得原来的L,变成PL(这时的L已经是标准的下三角矩阵了)。因为置换矩阵P只不过是对单位矩阵I进行行交换后的结果,因此,综合性质3性质4可知,置换矩阵P的行列式的值只能是+1或-1。在结合前面得出的L矩阵的行列式一定是1的结论,最终PL的行列式只能是+1或-1。

        因此,当我们基于矩阵A的LU分解计算出L的det后(必然是1),如果高斯消元的过程中进行过行交换,还要再根据行交换的次数(置换矩阵P)去调整det的符号。

事实上,在matlab中自带的计算矩阵行列式的det函数就利用了这一点。

        按照Matlab的官方说明文档,首先,他在计算矩阵的det时先调了lu分解函数,对矩阵进行分解。

注意,matlab的lu分解函数有很多,只是他在计算行列式时,调用的是[L,U]=lu(A)。

        按照他官方文档的说法,分解后的L矩阵和U矩阵中,L矩阵有被置换过,也就不是标准的三角矩阵。这和我们前面提到的,如果消元时进行过行交换的情况是一致的。

        然后,对这个“经过置换的下三角矩阵L”进行行交换,并记录交换过程得到:

\left | PL \right |=\left |P \right |\left | L \right |=\pm 1*1=\pm 1

        最后一步,求出矩阵U(他一定是一个标准的上三角矩阵)中主对角线上所有元素的乘积,然后和前一步的结果相乘,得到矩阵A的行列式:


\left |A \right |=\left |PLU \right |=\left | P \right |\left | L \right |\left | U \right |=(\pm 1)*(1)*\left | U \right |=\pm\left | U \right |

 例子:


(全文完)

作者 --- 松下J27 

 参考文献(鸣谢):

1,https://en.wikipedia.org/wiki/Determinant

2,Determinant of a Matrix

3,矩阵行列式 - MATLAB det- MathWorks 中国

4,线性代数 --- LU分解(Gauss消元法的矩阵表示)_矩阵的lu分解-CSDN博客

5,线性代数 --- Gauss消元的部分主元法和完全主元法_部分选主元高斯matlab-CSDN博客

(配图与本文无关)

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

这篇关于线性代数 --- 为什么LU分解中L矩阵的行列式一定等于正负1?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580909

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

跟我一起玩《linux内核设计的艺术》第1章(四)——from setup.s to head.s,这回一定让main滚出来!(已解封)

看到书上1.3的大标题,以为马上就要见着main了,其实啊,还早着呢,光看setup.s和head.s的代码量就知道,跟bootsect.s没有可比性,真多……这确实需要包括我在内的大家多一些耐心,相信见着main后,大家的信心和干劲会上一个台阶,加油! 既然上篇已经玩转gdb,接下来的讲解肯定是边调试边分析书上的内容,纯理论讲解其实我并不在行。 setup.s: 目标:争取把setup.

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩 目录 前言 一、特征值分解 二、应用特征值分解对图片进行压缩 三、矩阵的奇异值分解 四、应用奇异值分解对图片进行压缩 五、MATLAB仿真代码 前言         学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分

【UVA】10003-Cutting Sticks(动态规划、矩阵链乘)

一道动态规划题,不过似乎可以用回溯水过去,回溯的话效率很烂的。 13988658 10003 Cutting Sticks Accepted C++ 1.882 2014-08-04 09:26:49 AC代码: #include<cstdio>#include<cstring>#include<iostream>#include<algorithm>#include