跟我一起玩《linux内核设计的艺术》第1章(四)——from setup.s to head.s,这回一定让main滚出来!(已解封)

本文主要是介绍跟我一起玩《linux内核设计的艺术》第1章(四)——from setup.s to head.s,这回一定让main滚出来!(已解封),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看到书上1.3的大标题,以为马上就要见着main了,其实啊,还早着呢,光看setup.s和head.s的代码量就知道,跟bootsect.s没有可比性,真多……这确实需要包括我在内的大家多一些耐心,相信见着main后,大家的信心和干劲会上一个台阶,加油!

既然上篇已经玩转gdb,接下来的讲解肯定是边调试边分析书上的内容,纯理论讲解其实我并不在行。








setup.s:

目标:争取把setup.s讲完
 

==坑一==:接下来,setup.s有个大坑等着读者,关于把内核程序从0x10000复制到0x00000:

>do_move:
        mov     es,ax           ! destination segment
        add     ax,#0x1000
        cmp     ax,#0x9000
        jz      end_move
        mov     ds,ax           ! source segment
        sub     di,di
        sub     si,si
        mov     cx,#0x8000
        rep
        movsw
        jmp     do_move
 

本能反应是,movsw每次移动2字节(1个字),移动次数0x8000也就是32k次,那总共移动2B×32K=64KB……啥?才64KB?

当然,稍细心点的读者立马看到jmp do_move,我们知道jmp是无条件跳转语句,也就是说,这是二重循环嵌套,ax从0开始每次累加0x1000,总共循环8次后跳转end_move,因此这次内核大搬迁的总大小应该是2B×32K×8=512KB。其中ax累加顺便就把段寄存器ds对应的目的地址也累加。

问题来了,关于内核(system模块)当初图1-12不是说好的:“bootsect调用read_it将软盘第六扇区开始约240个扇区的system模块加载至内存的SYSSEG(0x10000)处往后的120KB空间中。”况且,bootsect.s的开头就明确了SYSSIZE = 0x3000,并且注释也明确了0x30000 bytes = 196kB, more than enough for current versions of linux。说了当前版本linux内核大小不会超过196KB,为啥还要复制512KB呢?

如果你从来没思考过这个问题,那说明学东西还是不够仔细。bootsect.s后面还有这段话:

! NOTE! currently system is at most 8*65536 bytes long. This should be no
        ! problem, even in the future. I want to keep it simple. This 512 KB kernel size should be enough……

也就是说,这段内核迁移代码,是考虑到future的情况,未来要保持简洁,永远不让内核超过512KB,这段代码就永远有效。

==坑二==:1.3.2一开始就给读者来个下马威:GDT\GDTR、IDT\IDTR、LDT、TSS、LGDT

(# ̄~ ̄#),感觉就是,看了跟没看一样……

根据书上的解释,可以做如下对比总结:

GDT:全局段描述表LDT:局部描述表IDT:中断描述表

GDT存了很多个全局段,

每个段对应了一个进程入口地址

LDT存了很多个任务task段

IDT存了很多中断服务程序的入口地址

GDT表中每个描述符对应一个任务task,每个任务又由局部描述符表LDT和任务状态段TSS来描述

IDT每个描述符就直接是入口地址
GDTR存GDT的基地址LDTR存LDT的基地址IDTR存IDT的基地址

好,是不是清晰很多了。接下来看setup.s对应的GDT\GDTR、IDT\IDTR初始化实现。

>gdt:(全局段描述符表)
        .word   0,0,0,0         ! dummy
        .word   0x07FF          ! 8Mb - limit=2047 (2048*4096=8Mb)
        .word   0x0000          ! base address=0
        .word   0x9A00          ! code read/exec
        .word   0x00C0          ! granularity=4096, 386
        .word   0x07FF          ! 8Mb - limit=2047 (2048*4096=8Mb)
        .word   0x0000          ! base address=0
        .word   0x9200          ! data read/write
        .word   0x00C0          ! granularity=4096, 386
idt_48:
        .word   0                       ! idt limit=0
        .word   0,0                     ! idt base=0L
gdt_48:(全局段描述符表寄存器)
        .word   0x800           ! gdt limit=2048, 256 GDT entries
        .word   512+gdt,0x9     ! gdt base = 0X9xxxx

先看GDT表的初始化过程。我们发现,gdt:初始化过程的顺序,和图1-18刚好是反的:

而GDTR的初始化gdt_48,也是相反的。

我们知道GDT表存储着全局段描述符,而GDTR存储着GDT的基地址。它们都是小端模式存储法。即高字节保存在高位,低字节保存在低高位。相当于权位与地址为直接对应。那么既然从低位开始初始化,当然首先保存低位,比如gdt_48:中先出现0x800,再比如gdt:中先出现0x7ff。至于为什么图1-18中把gdt三个描述符从下面往上面画,估计也是作者为了个小端模式的逻辑保持一致,本人觉得其实没这个必要。

好了,核心问题来了。你说gdt:是全局段描述符表,没问题,但对于不太精通汇编的读者来说,.word   512+gdt,0x9到底是啥意思?初步分析我们倒是知道,这里512对应0x200,也就是setup的基地址0x90200。那么gdt是啥?我们看看setup反汇编结果:

 >12d:   e4 64                   in     al,0x64
 12f:   a8 02                   test   al,0x2
 131:   75 f6                   jne    0x129
 133:   c3                      ret
        ...
 13c:   ff 07                   inc    WORD PTR [bx]
 13e:   00 00                   add    BYTE PTR [bx+si],al
 140:   00 9a c0 00             add    BYTE PTR [bp+si+0xc0],bl
 144:   ff 07                   inc    WORD PTR [bx]
 146:   00 00                   add    BYTE PTR [bx+si],al
 148:   00 92 c0 00             add    BYTE PTR [bp+si+0xc0],dl
 14c:   00 00                   add    BYTE PTR [bx+si],al
 14e:   00 00                   add    BYTE PTR [bx+si],al
 150:   00 00                   add    BYTE PTR [bx+si],al
 152:   00 08                   add    BYTE PTR [bx+si],cl
 154:   14 03                   adc    al,0x3
 156:   09 00                   or     WORD PTR [bx+si],ax

0x13c开始是明显的gdt初始化开始的片段(就是数据初始化,不是汇编指令,因此右边写的东西可以当乱码而无视)。在0x154这个地方,就是.word   512+gdt,0x9的编译结果。根据小端模式换算,原来512+gdt被编译器计算出结果是0x0314。而512对应0x200,于是gdt的值就应该是0x314-0x200 = 0x114。也就是说gdt = 0x114。当你删除gdt:后面部分内容时,编译后结果不变,因此推测512+gdt中的gdt应该就是代码偏移量。

但是,当我们加上首代码行号后(数据段占据了0x20),0x114+0x20 = 0x134,可是反汇编里没有0x134这行,为啥?如果你会用hexdump查看具体部分就会发现,setup从0x134~0x13b全是0,于是这部分内容被objdump用省略号雪藏了,其中就包括了重要的gdt的起始语句:.word   0,0,0,0。4个全0的“字”刚好对应8个全0的字节,而0x134~0x13b刚好是8行。于是,gdt:理想的反汇编结果,应该是这样的:

 >12d:   e4 64                   in     al,0x64
 12f:   a8 02                    test   al,0x2
 131:   75 f6                    jne    0x129
 133:   c3                        ret

 >134:   00 00          !.word  0,
 135:   00 00                  
 136:   00 00            !.word  0,   
 137:   00 00                  
 138:   00 00            !.word  0,      
 139:   00 00                     
 13a    00 00            !.word  0   
 13b:   00 00                    
 13c:   ff 07                   inc    WORD PTR [bx]
 13e:   00 00                add    BYTE PTR [bx+si],al
 140:   00 9a c0 00      add    BYTE PTR [bp+si+0xc0],bl
 144:   ff 07                  inc    WORD PTR [bx]
 146:   00 00                add    BYTE PTR [bx+si],al
 148:   00 92 c0 00      add    BYTE PTR [bp+si+0xc0],dl
 14c:   00 00                add    BYTE PTR [bx+si],al
 14e:   00 00                add    BYTE PTR [bx+si],al
 150:   00 00                add    BYTE PTR [bx+si],al
 152:   00 08                add    BYTE PTR [bx+si],cl
 154:   14 03                adc    al,0x3
 156:   09 00                 or     WORD PTR [bx+si],ax

事实上,由于全局段描述符表gdt:本来就是setup的组成部分,因此在图1-18的内存条图标中天然就排在setup的末尾,而gdt_48(GDTR)这个全局描述符表寄存器,也跟随setup的执行而被初始化。

==坑三==:1.3.3贴出了setup.s开启A20的代码,但对代码没做过多解释。

>call    empty_8042           !输入缓冲器空否?
mov     al,#0xD1                ! command write
out     #0x64,al                 !将值0xD1写入端口0x64,即写入8042的状态寄存器
call    empty_8042           !输入缓冲器空否?
mov     al,#0xDF                ! A20 on
out     #0x60,al                 !将值0xDF写入端口0x60,即写入8042的输出端口P2

         ……

>empty_8042:
        .word   0x00eb,0x00eb
        in      al,#0x64        ! 8042 status port 读取端口0x64,即读取8042的状态寄存器
        test    al,#2             ! is input buffer full?  bit1=1吗?
        jnz     empty_8042      ! yes - loop    bit1=1!
        ret

这里涉及到汇编中in\out语句,它们是CPU通过端口读写指令实现对外设的操作。其中in表示读端口,out表示写端口。

关于8042,你可以理解成早期独立的或现在模拟的键盘控制器8042 芯片。通过设置键盘控制器的端口值来达到设置A20的目的。

而关于intel 8042芯片有两个端口,其中0x60为数据端口,0x64为命令控制端口。0x64对应12条命令,其中0xD1表示:准备写output端口。也就是说,out     #0x64,al其实就是为后面开启A20做初始化准备的。而0x60作为数据端,那么0xDF就是作为数据(而非命令)传送到0x60端口,准确的讲0xDF = 11011111b应该叫设置字节。我们看到其中bit0 = 1,bit1 = 1,设置字节中最低的两位要同时为1,才能顺利开启A20。至于为什么这么设置,其他高位又是什么含义,不搞硬件的同学没必要深究了。(别别别刨根问底了暴露我的无知多没面子o(╯□╰)o,有脾气去下载intel 8042手册自己慢慢研究囧rz!!!)

不论是输入数据端口,还是控制端口,都需要call    empty_8042实现对输入缓冲器空否的判断。事实上,empty_8042:中还真有大坑,尤其是对汇编不熟的童鞋而言。那就是关于tes

这篇关于跟我一起玩《linux内核设计的艺术》第1章(四)——from setup.s to head.s,这回一定让main滚出来!(已解封)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148004

相关文章

linux hostname设置全过程

《linuxhostname设置全过程》:本文主要介绍linuxhostname设置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录查询hostname设置步骤其它相关点hostid/etc/hostsEDChina编程A工具license破解注意事项总结以RHE

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变