SLAM ORB-SLAM2(16)奇异值分解

2024-01-07 18:12
文章标签 16 slam 分解 orb slam2 奇异

本文主要是介绍SLAM ORB-SLAM2(16)奇异值分解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SLAM ORB-SLAM2(16)奇异值分解

  • 1. 特征分解
  • 2. SVD的定义
  • 3. SVD的分解
    • 3.1. 右奇异向量
    • 3.2. 左奇异向量
    • 3.3. 奇异值矩阵
  • 4. 分解举例
    • 4.1. 构建方阵
    • 4.2. 特征分解
      • 4.2.1. 求特征值
      • 4.2.2. 求特征向量
    • 4.3. 求奇异值
    • 4.4. 奇异值分解
  • 5. 几何意义
    • 5.1. 奇异值矩阵

这篇关于SLAM ORB-SLAM2(16)奇异值分解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580810

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【JavaScript】LeetCode:16-20

文章目录 16 无重复字符的最长字串17 找到字符串中所有字母异位词18 和为K的子数组19 滑动窗口最大值20 最小覆盖字串 16 无重复字符的最长字串 滑动窗口 + 哈希表这里用哈希集合Set()实现。左指针i,右指针j,从头遍历数组,若j指针指向的元素不在set中,则加入该元素,否则更新结果res,删除集合中i指针指向的元素,进入下一轮循环。 /*** @param

16 子组件和父组件之间传值

划重点 子组件 / 父组件 定义组件中:props 的使用组件中:data 的使用(有 return 返回值) ; 区别:Vue中的data (没有返回值);组件方法中 emit 的使用:emit:英文原意是:触发、发射 的意思components :直接在Vue的方法中声明和绑定要使用的组件 小炒肉:温馨可口 <!DOCTYPE html><html lang="en"><head><

react笔记 8-16 JSX语法 定义数据 数据绑定

1、jsx语法 和vue一样  只能有一个根标签 一行代码写法 return <div>hello world</div> 多行代码返回必须加括号 return (<div><div>hello world</div><div>aaaaaaa</div></div>) 2、定义数据 数据绑定 constructor(){super()this.state={na

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩 目录 前言 一、特征值分解 二、应用特征值分解对图片进行压缩 三、矩阵的奇异值分解 四、应用奇异值分解对图片进行压缩 五、MATLAB仿真代码 前言         学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分

打靶记录16——Momentum

靶机: https://download.vulnhub.com/momentum/Momentum.ova 下载后使用 VirtualBox 打开 难度:中 目标:取得 root 权限 + 2 Flag 攻击方法: 主机发现端口扫描信息收集Web 路径爆破XSS 漏洞JS 脚本分析AES 解密Redis 认证漏洞 主机发现 sudo arp-scan -l 端口扫描和服务发

连分数因子分解法——C语言实现

参考网址:连分数分解法寻找整数的因子(Python)-CSDN博客 大数运算:C语言实现 大数运算 加减乘除模运算 超详细_64编程 加减乘除取模 复杂运算-CSDN博客 ‌连分数因子分解法‌是一种用于大整数因子分解的算法,它是计算数论中的一个重要方法。连分数因子分解法通过寻找x2≡y2 (mod p)x2≡y2 (mod p)的形式来分解N。具体来说,这种方法涉及到计算N的简单连分数展开,并

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积

NYOJ 16 矩形嵌套

OJ题目 : http://acm.nyist.net/JudgeOnline/problem.php?pid=16 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除

《机器学习》 基于SVD的矩阵分解 推导、案例实现

目录 一、SVD奇异值分解 1、什么是SVD 2、SVD的应用         1)数据降维         2)推荐算法         3)自然语言处理 3、核心         1)什么是酉矩阵         2)什么是对角矩阵 4、分解过程 二、推导 1、如何求解这三个矩阵         1)已知:          2)根据酉矩阵的特点即可得出: