机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测

本文主要是介绍机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测
    • 一、任务
    • 二、流程
    • 三、完整代码
    • 四、代码解析
    • 五、效果截图

机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测

随机梯度下降(SGD)也称为增量梯度下降,是一种迭代方法,用于优化可微分目标函数。该方法通过在小批量数据上计算损失函数的梯度而迭代地更新权重与偏置项。SGD在高度非凸的损失表面上远远超越了朴素梯度下降法,这种简单的爬山法技术已经主导了现代的非凸优化。

一、任务

使用Paddle实现随机梯度下降(SGD)算法对波士顿房价数据进行线性回归的训练,给出每次迭代的权重、损失和梯度,并进行房价预测值与真实房价值对比。

二、流程

1、导入必要的库和模块:PaddlePaddle深度学习框架、numpy、os等常用的包和库。

2、读取数据并进行预处理。将数据进行归一化处理,将训练集和测试集划分为7:3的比例。

3、定义线性回归模型。自定义类 Regressor 继承自 paddle.nn.Layer ,初始化函数中定义了一个全连接层。该全连接层的输入维度为13,输出维度为1。

4、构建模型并训练。调用 Regressor() 函数生成模型,使用随机梯度下降法进行训练。。

5、模型预测。运用之前训练好的模型进行前向计算得到预测结果。

6、反归一化处理。进行反归一化处理,得到原始的房价估计值。

输出结果。将得到的预测结果和真实标签值进行比较,并输出预测房价的结果和真实房价结果。

三、完整代码

使用Paddle实现随机梯度下降(SGD)算法对波士顿房价数据进行线性回归的训练,给出每次迭代的权重、损失和梯度,并进行房价预测值与真实房价值对比。

#导入必要的包和库
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np
import os
import randomdef load_data():# 从文件导入数据datafile = './work/housing.data'data = np.fromfile(datafile, sep=' ', dtype=np.float32)# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']feature_num = len(feature_names)# 将原始数据进行Reshape,变成[N, 14]这样的形状data = data.reshape([data.shape[0] // feature_num, feature_num])# 这里使用70%的数据做训练,30%的数据做测试ratio = 0.7offset = int(data.shape[0] * ratio)training_data = data[:offset]# 计算train数据集的最大值,最小值,平均值maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \training_data.sum(axis=0) / training_data.shape[0]# 记录数据的归一化参数,在预测时对数据做归一化global max_valuesglobal min_valuesglobal avg_valuesmax_values = maximumsmin_values = minimumsavg_values = avgs# 对数据进行归一化处理for i in range(feature_num):data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])# 训练集和测试集的划分比例training_data = data[:offset]test_data = data[offset:]return training_data, test_data# 验证数据集读取程序的正确性
training_data, test_data = load_data()
print(training_data.shape)
print(training_data[1,:])class Regressor(paddle.nn.Layer):# self代表类的实例自身def __init__(self):# 初始化父类中的一些参数super(Regressor, self).__init__()# 定义一层全连接层,输入维度是13,输出维度是1self.fc = Linear(in_features=13, out_features=1)# 网络的前向计算def forward(self, inputs):x = self.fc(inputs)return x# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())EPOCH_NUM = 10  # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小# 定义外层循环
for epoch_id in range(EPOCH_NUM):# 在每轮迭代开始之前,将训练数据的顺序随机的打乱np.random.shuffle(training_data)# 将训练数据进行拆分,每个batch包含10条数据mini_batches = [training_data[k:k + BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]# 定义内层循环for iter_id, mini_batch in enumerate(mini_batches):x = np.array(mini_batch[:, :-1])  # 获得当前批次训练数据y = np.array(mini_batch[:, -1:])  # 获得当前批次训练标签(真实房价)# 将numpy数据转为飞桨动态图tensor的格式house_features = paddle.to_tensor(x)prices = paddle.to_tensor(y)# 前向计算predicts = model(house_features)# 计算损失loss = F.square_error_cost(predicts, label=prices)avg_loss = paddle.mean(loss)if iter_id % 20 == 0:print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))# 反向传播,计算每层参数的梯度值avg_loss.backward()# 更新参数,根据设置好的学习率迭代一步opt.step()# 清空梯度变量,以备下一轮计算opt.clear_grad()# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")def load_one_example():# 从上边已加载的测试集中,随机选择一条作为测试数据idx = np.random.randint(0, test_data.shape[0])idx = -10one_data, label = test_data[idx, :-1], test_data[idx, -1]# 修改该条数据shape为[1,13]one_data = one_data.reshape([1, -1])return one_data, label# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data)
predict = model(one_data)# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]print("预测房价结果:{}, 真实房价结果是: {}".format(predict.numpy(), label))

四、代码解析

  1. 外层循环(Epoch循环):

    pythonfor epoch_id in range(EPOCH_NUM):
    

    模型训练的外层循环,会遍历指定次数(EPOCH_NUM)的数据集。

  2. 训练数据的打乱和拆分:

    pythonnp.random.shuffle(training_data)
    mini_batches = [training_data[k:k + BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
    

    在每个 epoch 开始之前,随机打乱训练数据集。然后将数据集划分为小批次(mini-batches),每个批次包含 BATCH_SIZE 条数据。

  3. 内层循环(Batch循环):

    pythonfor iter_id, mini_batch in enumerate(mini_batches):
    

    每个 epoch 内部的循环,遍历每个小批次的数据。

  4. 数据处理:

    pythonx = np.array(mini_batch[:, :-1])  # 获得当前批次训练数据
    y = np.array(mini_batch[:, -1:])  # 获得当前批次训练标签(真实房价)
    house_features = paddle.to_tensor(x)
    prices = paddle.to_tensor(y)
    

    从当前小批次中分离出输入特征 x 和对应的标签 y,然后将它们转换为飞桨动态图的张量格式。

  5. 前向计算和损失计算:

    pythonpredicts = model(house_features)
    loss = F.square_error_cost(predicts, label=prices)
    avg_loss = paddle.mean(loss)
    

    通过模型进行前向计算,然后计算预测值与真实标签的均方误差损失。

  6. 打印损失信息:

    pythonif iter_id % 20 == 0:print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))
    

    每隔一定步数打印当前的损失值,以便观察训练过程。

  7. 反向传播和参数更新:

    pythonavg_loss.backward()
    opt.step()
    opt.clear_grad()
    

    通过反向传播计算梯度,然后使用优化器(opt)更新模型参数

  8. 模型保存:

    pythonpaddle.save(model.state_dict(), 'LR_model.pdparams')
    

    在训练结束后,保存训练好的模型参数到文件中。

  9. 加载测试数据的函数:

    def load_one_example():# 从上边已加载的测试集中,随机选择一条作为测试数据idx = np.random.randint(0, test_data.shape[0])idx = -10one_data, label = test_data[idx, :-1], test_data[idx, -1]# 修改该条数据shape为[1,13]one_data = one_data.reshape([1, -1])return one_data, label
    

    用于从测试集中随机选择一条数据作为测试样本,并返回该样本的特征和标签。

# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data)
predict = model(one_data)# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]print("预测房价结果:{}, 真实房价结果是: {}".format(predict.numpy(), label))

model_dict = paddle.load(‘LR_model.pdparams’): 从文件 ‘LR_model.pdparams’ 中加载保存的模型参数。

model.load_dict(model_dict): 将加载的模型参数字典加载到模型中。这个步骤将预训练好的参数应用到模型中。

model.eval(): 将模型设置为评估模式,这通常用于测试或推断阶段。

one_data, label = load_one_example(): 加载一个样本和其对应的标签。

one_data = paddle.to_tensor(one_data): 将输入数据 one_data 转换为 PaddlePaddle 动态图的 Variable 格式。。

predict = model(one_data): 使用加载的模型进行推断,得到预测结果 predict。

predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]: 对模型的预测结果进行反归一化处理。

label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]: 对标签数据进行相同的反归一化处理,以便比较预测结果和真实标签。

最后,打印出预测结果和真实标签:print(“预测房价结果:{}, 真实房价结果是: {}”.format(predict.numpy(), label))。这里使用 numpy() 方法将 PaddlePaddle 的 Tensor 转换为 NumPy 数组,以便更方便地打印结果。

五、效果截图

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
保存模型参数,文件名为LR_model.pdparams

paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

这篇关于机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564394

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd