特征值分解、奇异值分解、QR分解、cholesky分解

2024-01-01 05:39

本文主要是介绍特征值分解、奇异值分解、QR分解、cholesky分解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

特征值分解

A A A 为实对称矩阵,则总有
A = U Σ U − 1 = U Σ U H A=U \Sigma U^{-1}=U \Sigma U^{\rm{H}} A=UΣU1=UΣUH
特征值与特征向量
A x = λ x Ax=\lambda x Ax=λx
物理意义:向量经过矩阵变换后没有发生旋转,只进行了伸缩。

对称阵(酉空间中叫 Hermite 矩阵,即厄米阵)总能相似对角化,并且不同特征值对应的特征向量两两正交。

SVD分解

任意M × \times ×N的矩阵,总能找到一组正交基使得经过它变换后还是正交基。
A = U Σ V

这篇关于特征值分解、奇异值分解、QR分解、cholesky分解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/558300

相关文章

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩 目录 前言 一、特征值分解 二、应用特征值分解对图片进行压缩 三、矩阵的奇异值分解 四、应用奇异值分解对图片进行压缩 五、MATLAB仿真代码 前言         学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分

线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录 1.特征值和特征向量1.1 特征值和特征向量的定义1.2 特征值和特征向量的求法1.3 特征值特征向量的主要结论 2.相似2.1 相似的定义2.2 相似的性质2.3 相似的结论 3.相似对角化4.实对称矩阵4.1 实对称矩阵的基本性质4.2 施密特正交化 5.重难点题型总结5.1 判断矩阵能否相似对角化5.2 已知两个矩阵相似,求某个矩阵中的未知参数5.3 相似时,求可逆矩阵P,使

连分数因子分解法——C语言实现

参考网址:连分数分解法寻找整数的因子(Python)-CSDN博客 大数运算:C语言实现 大数运算 加减乘除模运算 超详细_64编程 加减乘除取模 复杂运算-CSDN博客 ‌连分数因子分解法‌是一种用于大整数因子分解的算法,它是计算数论中的一个重要方法。连分数因子分解法通过寻找x2≡y2 (mod p)x2≡y2 (mod p)的形式来分解N。具体来说,这种方法涉及到计算N的简单连分数展开,并

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积

《机器学习》 基于SVD的矩阵分解 推导、案例实现

目录 一、SVD奇异值分解 1、什么是SVD 2、SVD的应用         1)数据降维         2)推荐算法         3)自然语言处理 3、核心         1)什么是酉矩阵         2)什么是对角矩阵 4、分解过程 二、推导 1、如何求解这三个矩阵         1)已知:          2)根据酉矩阵的特点即可得出:

奇异值与特征值基础

一、奇异值与特征值基础知识:     特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧:    1)特征值:     如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:     这时候λ就被称为特征向量v对应的特征值,一个

翻译论文的关键部分 | Parallel Tiled QR Factorization for Multicore Architectures

SSRFB DTSQT2 DLARFB DGEQT2 1, 对角子矩阵分解 DGEQT2 这个例程被开发出来,用于针对对角Tile子矩阵: ,执行不分块的QR分解。 这个运算产生: 一个上三角矩阵 一个酉下三角矩阵,这个矩阵包含 b 个 Householder 反光面、 一个上三角矩阵 ,在WY技术中,这个矩阵被定义用来累计Householder变换。 和 能够写进 所占据的内存空间,

素数判定和分解质素数

1.素数判定   public static boolean isPrime(int n) {if (n <= 1) return false;if (n == 2) return true;if (n % 2 == 0) return false;int limit = (int)Math.sqrt(n) + 1;for (int i = 3; i <= limit; i += 2) {i

等式(数论/唯一分解定理)

链接: https://www.nowcoder.com/acm/contest/90/F 来源:牛客网 题目描述 给定n,求1/x + 1/y = 1/n (x<=y)的解数。(x、y、n均为正整数) 输入描述: 在第一行输入一个正整数T。接下来有T行,每行输入一个正整数n,请求出符合该方程要求的解数。(1<=n<=1e9) 输出描述: 输出符合该方程要求的解数。

【SGU】113. Nearly prime numbers 合数分解

传送门:【SGU】113. Nearly prime numbers 题目分析:O(sqrt(N))。。 代码如下: #include <cstdio>#include <cstring>#include <iostream>#include <algorithm>using namespace std ;#define rep( i , a , b ) for