【动态规划】【广度优先搜索】LeetCode:2617 网格图中最少访问的格子数

本文主要是介绍【动态规划】【广度优先搜索】LeetCode:2617 网格图中最少访问的格子数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及的基础知识点

二分查找算法合集
动态规划

题目

给你一个下标从 0 开始的 m x n 整数矩阵 grid 。你一开始的位置在 左上角 格子 (0, 0) 。
当你在格子 (i, j) 的时候,你可以移动到以下格子之一:
满足 j < k <= grid[i][j] + j 的格子 (i, k) (向右移动),或者
满足 i < k <= grid[i][j] + i 的格子 (k, j) (向下移动)。
请你返回到达 右下角 格子 (m - 1, n - 1) 需要经过的最少移动格子数,如果无法到达右下角格子,请你返回 -1 。
示例 1:
输入:grid = [[3,4,2,1],[4,2,3,1],[2,1,0,0],[2,4,0,0]]
在这里插入图片描述

输出:4
解释:上图展示了到达右下角格子经过的 4 个格子。
示例 2:
输入:grid = [[3,4,2,1],[4,2,1,1],[2,1,1,0],[3,4,1,0]]
输出:3
解释:上图展示了到达右下角格子经过的 3 个格子。
在这里插入图片描述

示例 3:
输入:grid = [[2,1,0],[1,0,0]]
输出:-1
解释:无法到达右下角格子。
参数范围
m == grid.length
n == grid[i].length
1 <= m, n <= 105
1 <= m * n <= 105
0 <= grid[i][j] < m * n
grid[m - 1][n - 1] == 0

广度优先搜索和二分查找

时间复杂度

O(mnlogmax(m,n))。遍历每个单格时间复杂度O(nm),处理一个单格O(n)+O(m)。暴力方法的时间复杂度O(nmk),极端情况下超时。

变量解析

vRows各行没有处理的单格的列号
vCols各列没有处理的单格行号
vDis各单格距离起点的距离
que需要处理邻居的单格

核心代码

class Solution {
public:
int minimumVisitedCells(vector<vector>& grid) {
m_r = grid.size();
m_c = grid.front().size();
vector<set> vRows(m_r), vCols(m_c);
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
if (r + c == 0)
{
continue;
}
vRows[r].emplace©;
vCols[c].emplace®;
}
}
vector vDis(m_c * m_r,-1);
vDis[0] = 1;
queue<pair<int, int>> que;
que.emplace(0, 0);
auto Do = [&](int iDis,const int r, const int c)
{
vDis[m_c * r + c] = iDis + 1;
que.emplace(r, c);
};
while (que.size())
{
const auto [r, c] = que.front();
que.pop();
const int len = grid[r][c];
const int dis = vDis[m_c * r + c];
{//右跳
auto it = vRows[r].lower_bound©;
auto ij = vRows[r].upper_bound(c + len);
for (auto tmp = it; tmp != ij; ++tmp)
{
Do(dis, r, *tmp);
vCols[*tmp].erase®;
}
vRows[r].erase(it, ij);
}
{
auto it = vCols[c].lower_bound®;
auto ij = vCols[c].upper_bound(r + len);
for (auto tmp = it; tmp != ij; ++tmp)
{
Do(dis, *tmp,c);
vRows[*tmp].erase©;
}
vCols[c].erase(it, ij);
}
}
return vDis.back();
}
int m_r, m_c;
};

测试用例

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){assert(v1[i] == v2[i]);}
}template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}int main()
{vector<vector<int>> grid;{Solution slu;grid = { {3,4,2,1},{4,2,3,1},{2,1,0,0},{2,4,0,0} };auto res = slu.minimumVisitedCells(grid);Assert(4, res);}{Solution slu;grid = { {3,4,2,1},{4,2,1,1},{2,1,1,0},{3,4,1,0} };auto res = slu.minimumVisitedCells(grid);Assert(3, res);}{Solution slu;grid = { {2,1,0},{1,0,0} };auto res = slu.minimumVisitedCells(grid);Assert(-1, res);}
}

动态规划

广度优先搜索是基于动态规划实现的,如果不修改广度优先的实现,无需突出动态规划。经典广度优先搜索时,先处理距离起点近的,再处理距离远点的。是为了保证动态规划的无后效性。通俗的说:就是每个运算的前提条件都已经计算完毕。距离为iDis的单格显然是距离iDis-1单格的邻居,计算iDis的单格时,显然要计算完所有距离为iDis-1的单格。本题只右移和下移,先行后列,行列都是从小到大,也可以保证无后效性。优化枚举顺序后,就不再是广度优先搜索了,变成的普通的动态规划。

时间复杂度

O(mnlogmax(n,m))。

变量解析

rowMinHeap当前行可以到达的列和总共经过的单格数-1
colMinHeaps各列可以到达的行和总共经过的单格数-1

用小根堆记录经过的单格数和列号。由于列号是增加的,所有如果堆顶的列号小于当前列号,则对应小于后面的列号,可以永久删除。 删除堆顶列号过小的元素后,堆顶元素就是最小经过的单格树。

代码

class Solution {
public:typedef priority_queue<pair<int,int>, vector<pair<int, int>>, greater<>> HTYPE;int minimumVisitedCells(vector<vector<int>>& grid) {m_r = grid.size();m_c = grid.front().size();vector<vector<int>> vDis(m_r, vector<int>(m_c, -1));		vector< HTYPE> colMinHeaps(m_c);for (int r = 0; r < m_r; r++){	HTYPE rowMinHeap;auto Add = [&](const int r, const int c, int iNewDis){vDis[r][c] = iNewDis;rowMinHeap.emplace(iNewDis, c + grid[r][c]);colMinHeaps[c].emplace(iNewDis, r + grid[r][c]);};for (int c = 0; c < m_c; c++){if (r + c == 0){Add(r, c, 1);continue;}while (rowMinHeap.size() && (rowMinHeap.top().second < c)){rowMinHeap.pop();}while (colMinHeaps[c].size() && (colMinHeaps[c].top().second < r )){colMinHeaps[c].pop();}int iPreMin = INT_MAX;if (rowMinHeap.size()){iPreMin = min(iPreMin, rowMinHeap.top().first);}if (colMinHeaps[c].size()){iPreMin = min(iPreMin, colMinHeaps[c].top().first);}if (INT_MAX == iPreMin){continue;}Add(r, c, iPreMin + 1);}}		return vDis.back().back();}int m_r, m_c;
};

单调向量(有序向量)

可以逆向考虑,从终点到起点。这样可以记录可以到达单元格的行(列)和经过的单格数。在保持数据的单调的情况下,行(列)递减,单格数递增。新增有利条件: 行(列)插入的顺序也递减。这意味者可以用单调向量。

代码

class Solution {
public:int minimumVisitedCells(vector<vector<int>>& grid) {m_r = grid.size();m_c = grid.front().size();vector<vector<int>> vDis(m_r, vector<int>(m_c, -1));vector< vector<pair<int,int>>> cols(m_c);//列(行)号按降序排除,距离按升序排列for (int r = m_r-1; r >= 0 ; r-- ){vector<pair<int, int>> row;auto Add = [&](const int r, const int c, int iNewDis){vDis[r][c] = iNewDis;while (row.size() && (row.back().first >= iNewDis)){row.pop_back();}row.emplace_back(iNewDis,c);while (cols[c].size() && (cols[c].back().first >= iNewDis)){cols[c].pop_back();}cols[c].emplace_back(iNewDis, r);};auto Cmp = [&](const pair<int, int>& pr, int rc){return pr.second > rc;};for (int c = m_c-1 ; c >= 0 ;c--){if (r + c + 2 == m_r+m_c ){Add(r, c, 1);continue;}				int iPreMin = INT_MAX;auto it = std::lower_bound(row.begin(), row.end(), c + grid[r][c], Cmp);if (row.end() != it ){iPreMin = min(iPreMin, it->first);}auto ij = std::lower_bound(cols[c].begin(), cols[c].end(), r + grid[r][c], Cmp);if (cols[c].end() != ij ){iPreMin = min(iPreMin, ij->first);}if (INT_MAX == iPreMin){continue;}Add(r, c, iPreMin + 1);}}return vDis.front().front();}int m_r, m_c;
};

2023年8月版

typedef std::priority_queue<std::pair<int, int>,vector<std::pair<int, int>>,std::greater<std::pair<int, int>> > QUE;
class Solution {
public:
int minimumVisitedCells(vector<vector>& grid) {
m_r = grid.size();
m_c = grid[0].size();
vector<vector> vVis(m_r, vector(m_c,INT_MAX));
vVis[0][0] = 1;
vector< std::multiset> setCols(m_c);
vector< QUE> vDelCols(m_c);
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
auto& setCol = setCols[c];
auto& vDelCol = vDelCols[c];
while (vDelCol.size() && (vDelCol.top().first == r))
{
setCol.erase(setCol.find(vDelCol.top().second));
vDelCol.pop();
}
}
std::multiset setRow;
QUE vDelRow;
auto Add = [&](int r, int c, int dis, int value)
{
if (INT_MAX == dis)
{
return;
}
setRow.emplace(dis);
vDelRow.emplace(c + value + 1, dis);
setCols[c].emplace(dis);
vDelCols[c].emplace(r + value + 1, dis);
};
for (int c = 0; c < m_c; c++)
{
if (r + c == 0)
{
Add(0, 0, vVis[0][0], grid[r][c]);
continue;
}
while (vDelRow.size() && (vDelRow.top().first == c))
{
setRow.erase(setRow.find(vDelRow.top().second));
vDelRow.pop();
}
if (setRow.size())
{
vVis[r][c] = min(vVis[r][c],*setRow.begin()+1);
}
auto& setCol = setCols[c];
if (setCol.size())
{
vVis[r][c] = min(vVis[r][c], *setCol.begin() + 1);
}
if (INT_MAX == vVis[r][c])
{
continue;
}
Add(r, c, vVis[r][c], grid[r][c]);
}
}
int iRet = vVis.back().back();
return (INT_MAX == iRet) ? -1 : iRet;
}
int m_r, m_c;
};

其它方法

可以用有向图并集查找,寻找没有删除的元素。r1和r2连接,表示[r1,r2)已经全部删除,直接处理r2。

2023年9月版

class Solution {
public:
int minimumVisitedCells(vector<vector>& grid) {
m_r = grid.size(), m_c = grid[0].size();
if (m_r * m_c == 1)
{
return 1;
}
vector<vector<std::pair<int,int>>> vvRowMinDis(m_c); // 每列的单调栈
int iRet = m_iNotMay;
for (int r = m_r - 1; r >= 0; r–)
{
std::vector<std::pair<int, int>> vColMinDis;//列号越来越小,值越来越大
for (int c = m_c - 1; c >= 0; c–)
{
auto& sta = vvRowMinDis[c];
if ((m_r - 1 == r) && (m_c - 1 == c))
{
vColMinDis.emplace_back(c, 1);
sta.emplace_back(r, 1);
continue;
}
int iCurDis = m_iNotMay;
//处理右移
auto it = std::lower_bound(vColMinDis.begin(), vColMinDis.end(), c + grid[r][c], [](const std::pair<int, int>& p1, int a)
{return p1.first > a; });
if (vColMinDis.end() != it)
{
const int iDis = it->second + 1;
iCurDis = min(iCurDis, iDis);
}
//处理左移
auto ij = std::lower_bound(sta.begin(), sta.end(), r + grid[r][c], [](const std::pair<int, int>& p1, int a)
{return p1.first > a; });
if (sta.end() != ij)
{
const int iDis = ij->second + 1;
iCurDis = min(iCurDis, iDis);
}
if (m_iNotMay == iCurDis)
{
continue;
}
while (sta.size() && (sta.back().second >= iCurDis))
{
sta.pop_back();
}
sta.emplace_back(r, iCurDis);
while (vColMinDis.size() && (vColMinDis.back().second >= iCurDis))
{
vColMinDis.pop_back();
}
vColMinDis.emplace_back(c, iCurDis);
if (r + c == 0)
{
iRet = iCurDis;
}
}
}
return (iRet >= m_iNotMay ) ? -1 : iRet;
}
int m_r, m_c;
const int m_iNotMay = 1000 * 1000 * 1000;

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【广度优先搜索】LeetCode:2617 网格图中最少访问的格子数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/495672

相关文章

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.

SpringBoot如何访问jsp页面

《SpringBoot如何访问jsp页面》本文介绍了如何在SpringBoot项目中进行Web开发,包括创建项目、配置文件、添加依赖、控制层修改、测试效果以及在IDEA中进行配置的详细步骤... 目录SpringBoot如何访问JSP页python面简介实现步骤1. 首先创建的项目一定要是web项目2. 在

Linux限制ip访问的解决方案

《Linux限制ip访问的解决方案》为了修复安全扫描中发现的漏洞,我们需要对某些服务设置访问限制,具体来说,就是要确保只有指定的内部IP地址能够访问这些服务,所以本文给大家介绍了Linux限制ip访问... 目录背景:解决方案:使用Firewalld防火墙规则验证方法深度了解防火墙逻辑应用场景与扩展背景:

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

Python使用pysmb库访问Windows共享文件夹的详细教程

《Python使用pysmb库访问Windows共享文件夹的详细教程》本教程旨在帮助您使用pysmb库,通过SMB(ServerMessageBlock)协议,轻松连接到Windows共享文件夹,并列... 目录前置条件步骤一:导入必要的模块步骤二:配置连接参数步骤三:实例化SMB连接对象并尝试连接步骤四:

C# ComboBox下拉框实现搜索方式

《C#ComboBox下拉框实现搜索方式》文章介绍了如何在加载窗口时实现一个功能,并在ComboBox下拉框中添加键盘事件以实现搜索功能,由于数据不方便公开,作者表示理解并希望得到大家的指教... 目录C# ComboBox下拉框实现搜索步骤一步骤二步骤三总结C# ComboBox下拉框实现搜索步骤一这

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c