Logistic回归预测疝气病病马死亡率

2023-11-20 21:40

本文主要是介绍Logistic回归预测疝气病病马死亡率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Logistic回归预测疝气病病马死亡率

官方使用文档LogisticRegression
参考链接:https://blog.csdn.net/c406495762/article/details/77851973#四-使用sklearn构建logistic回归分类器
在这里插入图片描述

参数说明如下:

penalty:惩罚项,str类型,可选参数为l1和l2,默认为l2。用于指定惩罚项中使用的规范。newton-cg、sag和lbfgs求解算法只支持L2规范。L1G规范假设的是模型的参数满足拉普拉斯分布,L2假设的模型参数满足高斯分布,所谓的范式就是加上对参数的约束,使得模型更不会过拟合(overfit),但是如果要说是不是加了约束就会好,这个没有人能回答,只能说,加约束的情况下,理论上应该可以获得泛化能力更强的结果。
dual:对偶或原始方法,bool类型,默认为False。对偶方法只用在求解线性多核(liblinear)的L2惩罚项上。当样本数量>样本特征的时候,dual通常设置为False。
tol:停止求解的标准,float类型,默认为1e-4。就是求解到多少的时候,停止,认为已经求出最优解。
c:正则化系数λ的倒数,float类型,默认为1.0。必须是正浮点型数。像SVM一样,越小的数值表示越强的正则化。
fit_intercept:是否存在截距或偏差,bool类型,默认为True。
intercept_scaling:仅在正则化项为”liblinear”,且fit_intercept设置为True时有用。float类型,默认为1。
class_weight:用于标示分类模型中各种类型的权重,可以是一个字典或者balanced字符串,默认为不输入,也就是不考虑权重,即为None。如果选择输入的话,可以选择balanced让类库自己计算类型权重,或者自己输入各个类型的权重。举个例子,比如对于0,1的二元模型,我们可以定义class_weight={0:0.9,1:0.1},这样类型0的权重为90%,而类型1的权重为10%。如果class_weight选择balanced,那么类库会根据训练样本量来计算权重。某种类型样本量越多&#x

这篇关于Logistic回归预测疝气病病马死亡率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397630

相关文章

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: ​ 是时间  的变量向量。 是常数向量。​ 是每个时间滞后的回归系数矩阵。​ 是误差项向量,假

Tensorflow lstm实现的小说撰写预测

最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。 lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。 1、将小说进行分词,去除空格,建立词汇表与id的字典,生成初始输入模型的x与y d

临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

生信碱移 IRnet介绍 用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。 临床实践中常常遇到许多复杂的问题,常见的两种是: 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类); 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平; 尽管传统的机器学习提供了高效的建模预测与初步的特征重

深度学习与大模型第3课:线性回归模型的构建与训练

文章目录 使用Python实现线性回归:从基础到scikit-learn1. 环境准备2. 数据准备和可视化3. 使用numpy实现线性回归4. 使用模型进行预测5. 可视化预测结果6. 使用scikit-learn实现线性回归7. 梯度下降法8. 随机梯度下降和小批量梯度下降9. 比较不同的梯度下降方法总结 使用Python实现线性回归:从基础到scikit-learn 线性

【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4

目录  Wald 估计与简单控制回归的比较 CausalPy 和 多变量模型 感兴趣的系数 复杂化工具变量公式  Wald 估计与简单控制回归的比较 但现在我们可以将这个估计与仅包含教育作为控制变量的简单回归进行比较。 naive_reg_model, idata_reg = make_reg_model(covariate_df.assign(education=df[

什么是GPT-3的自回归架构?为什么GPT-3无需梯度更新和微调

文章目录 知识回顾GPT-3的自回归架构何为自回归架构为什么架构会影响任务表现自回归架构的局限性与双向模型的对比小结 为何无需梯度更新和微调为什么不需要怎么做到不需要 🍃作者介绍:双非本科大四网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发,目前开始人工智能领域相关知识的学习 🦅个人主页:@逐梦苍穹 📕所属专栏:人工智能 🌻gitee地址:x

结合Python与GUI实现比赛预测与游戏数据分析

在现代软件开发中,用户界面设计和数据处理紧密结合,以提升用户体验和功能性。本篇博客将基于Python代码和相关数据分析进行讨论,尤其是如何通过PyQt5等图形界面库实现交互式功能。同时,我们将探讨如何通过嵌入式预测模型为用户提供赛果预测服务。 本文的主要内容包括: 基于PyQt5的图形用户界面设计。结合数据进行比赛预测。文件处理和数据分析流程。 1. PyQt5 图形用户界面设计

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测 目录 多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测(完整源码和数据) 2.SS