Tensorflow lstm实现的小说撰写预测

2024-09-08 02:18

本文主要是介绍Tensorflow lstm实现的小说撰写预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。

lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。

1、将小说进行分词,去除空格,建立词汇表与id的字典,生成初始输入模型的x与y

def readfile(file_path):
    f = codecs.open(file_path, 'r', 'utf-8')
    alltext = f.read()
    alltext = re.sub(r'\s','', alltext)
    seglist = list(jieba.cut(alltext, cut_all = False))
    return seglist
    
def _build_vocab(filename):
    data = readfile(filename)
    counter = collections.Counter(data)
    count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))


    words, _ = list(zip(*count_pairs))
    word_to_id = dict(zip(words, range(len(words))))
    id_to_word = dict(zip(range(len(words)),words))
    dataids = []
    for w in data:
        dataids.append(word_to_id[w])
    return word_to_id, id_to_word,dataids


def dataproducer(batch_size, num_steps):
    word_to_id, id_to_word, data = _build_vocab('F:\\ml\\code\\lstm\\1.txt')
    datalen = len(data)
    batchlen = datalen//batch_size
    epcho_size = (batchlen - 1)//num_steps


    data = tf.reshape(data[0: batchlen*batch_size], [batch_size,batchlen])
    i = tf.train.range_input_producer(epcho_size, shuffle=False).dequeue()
    x = tf.slice(data, [0,i*num_steps],[batch_size, num_steps])
    y = tf.slice(data, [0,i*num_steps+1],[batch_size, num_steps])
    x.set_shape([batch_size, num_steps])
    y.set_shape([batch_size, num_steps])
    return x,y,id_to_word

2、建立lstm模型:

lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(size, forget_bias = 0.5)
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_cell, output_keep_prob = keep_prob)
cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell], num_layers)

3、根据训练数据输出误差反向调整模型

with tf.variable_scope("Model", reuse = None, initializer = initializer):#tensorflow主要通过变量空间来实现共享变量
    with tf.variable_scope("r", reuse = None, initializer = initializer):
        softmax_w = tf.get_variable('softmax_w', [size, vocab_size])
        softmax_b = tf.get_variable('softmax_b', [vocab_size])
    with tf.variable_scope("RNN", reuse = None, initializer = initializer):
        for time_step in range(num_steps):
            if time_step > 0: tf.get_variable_scope().reuse_variables()
            (cell_output, state) = cell(inputs[:, time_step, :], state,)
            outputs.append(cell_output)
            
        output = tf.reshape(outputs, [-1,size])
        
        logits = tf.matmul(output, softmax_w) + softmax_b
        loss = tf.nn.seq2seq.sequence_loss_by_example([logits], [tf.reshape(targets,[-1])], [tf.ones([batch_size*num_steps])])
        
        global_step = tf.Variable(0)
        learning_rate = tf.train.exponential_decay(
        10.0, global_step, 5000, 0.1, staircase=True)
        optimizer = tf.train.GradientDescentOptimizer(learning_rate)
        gradients, v = zip(*optimizer.compute_gradients(loss))
        gradients, _ = tf.clip_by_global_norm(gradients, 1.25)
        optimizer = optimizer.apply_gradients(zip(gradients, v), global_step=global_step)

4、预测新一轮输出

teststate = test_initial_state
        (celloutput,teststate)= cell(test_inputs, teststate)
        partial_logits = tf.matmul(celloutput, softmax_w) + softmax_b
        partial_logits = tf.nn.softmax(partial_logits)

5、根据之前建立的操作,运行tensorflow会话

sv = tf.train.Supervisor(logdir=None)
with sv.managed_session() as session:
    costs = 0
    iters = 0
    for i in range(1000):
        _,l= session.run([optimizer, cost])
        costs += l
        iters +=num_steps
        perplextity = np.exp(costs / iters)
        if i%20 == 0:
            print(perplextity)
        if i%100 == 0:
            p = random_distribution()
            b = sample(p)
            sentence = id_to_word[b[0]]
            for j in range(200):
                test_output = session.run(partial_logits, feed_dict={test_input:b})
                b = sample(test_output)
                sentence += id_to_word[b[0]]
            print(sentence)    

其中,使用sv.managed_session()后,在此会话间,将不能修改graph。如果采用普通的session,程序将会阻塞于session.run(),对于这个问题,我还是很疑惑,希望理解的人帮忙解答下。

代码地址位于https://github.com/summersunshine1/datamining/tree/master/lstm,运行时只需将readdata中文件路径修改即可。作为深度学习的入门小白,希望大家多多指点。

运行结果如下:



这篇关于Tensorflow lstm实现的小说撰写预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146833

相关文章

Qt实现对Word网页的读取功能

《Qt实现对Word网页的读取功能》文章介绍了几种在Qt中实现Word文档(.docx/.doc)读写功能的方法,包括基于QAxObject的COM接口调用、DOCX模板替换及跨平台解决方案,重点讨论... 目录1. 核心实现方式2. 基于QAxObject的COM接口调用(Windows专用)2.1 环境

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

Java实现字符串大小写转换的常用方法

《Java实现字符串大小写转换的常用方法》在Java中,字符串大小写转换是文本处理的核心操作之一,Java提供了多种灵活的方式来实现大小写转换,适用于不同场景和需求,本文将全面解析大小写转换的各种方法... 目录前言核心转换方法1.String类的基础方法2. 考虑区域设置的转换3. 字符级别的转换高级转换

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局