【NOIP2012】洛谷1082 同余方程

2023-11-07 21:09

本文主要是介绍【NOIP2012】洛谷1082 同余方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解。 输入输出格式 输入格式:

输入只有一行,包含两个正整数 a, b,用一个空格隔开。

输出格式:

输出只有一行,包含一个正整数 x0,即最小正整数解。输入数据保证一定有解。

裸的扩展欧几里得算法。

#include<cstdio>
#include<cstring>
#define L long long
void euc(L a,L b,L &x,L &y)
{if (b==0){x=1;y=0;return;}euc(b,a%b,y,x);y-=x*(a/b);
}
int main()
{L a,b,x,y;scanf("%lld%lld",&a,&b);euc(a,b,x,y);printf("%lld\n",(x%b+b)%b);
}

这篇关于【NOIP2012】洛谷1082 同余方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/366287

相关文章

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

高精度计算(代码加解析,洛谷p1601,p1303)除法待更新

目录 高精度加法 高精度减法 高精度乘法 高精度加法 我们知道在c++语言中任何数据类型都有一定的表示范围。当两个被加数很大时,正常加法不能得到精确解。在小学,我们做加法都采用竖式方法。那么我们也只需要按照加法进位的方式就能得到最终解。 8 5 6+ 2 5 5-------1 1 1 1 加法进位: c[i] = a[i] + b[i];if(c[i] >=

洛谷 凸多边形划分

T282062 凸多边形的划分 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 先整一个半成品,高精度过两天复习一下补上 #include <iostream>#include <algorithm>#include <set>#include <cstring>#include <string>#include <vector>#include <map>

能量项链,洛谷

解释:  环形dp问题还是考虑将环拉直,可以参考我上一篇文章:环形石子合并 [2 3 5 10 2] 3 5 10 将环拉直,[]内是一个有效的区间,可以模拟吸收珠子的过程,         如[2 3 5] <=>(2,3)(3,5)    2是头,3是中间,5是尾 len >= 3:因为最后[2 10 2]是最小的可以合并的有效区间 len <= n + 1因为[2 3

OpenGL/GLUT实践:流体模拟——数值解法求解Navier-Stokes方程模拟二维流体(电子科技大学信软图形与动画Ⅱ实验)

源码见GitHub:A-UESTCer-s-Code 文章目录 1 实现效果2 实现过程2.1 流体模拟实现2.1.1 网格结构2.1.2 数据结构2.1.3 程序结构1) 更新速度场2) 更新密度值 2.1.4 实现效果 2.2 颜色设置2.2.1 颜色绘制2.2.2 颜色交互2.2.3 实现效果 2.3 障碍设置2.3.1 障碍定义2.3.2 障碍边界条件判定2.3.3 障碍实现2.3.

R语言结构方程模型分析与实践技术应用

结构方程模型(Sructural Equation Model)是一种建立、估计和检验研究系统中多变量间因果关系的模型方法,它可以替代多元回归、因子分析、协方差分析等方法,利用图形化模型方式清晰展示研究系统中变量间的因果网络关系,是近年来地学、生态、进化、环境、医学、社会、经济领域中应用十分广泛的统计方法。然而,自Wright在1920年美国科学院院刊(PNAS)提出第一个通径/路径(Pa

解决ax+by=c,不定方程(扩展欧几里得)

首先有几个定理我们需要知道,在这里我也会一一证明。 —————————————————————————————————————— 定理1:gcd(a,b)==gcd(b,a%b);这个是欧几里得提出并证明的。 (%是取余的意思,在数学中 可用mod表示); 以下是证明过程 —————————————————————————————————————— 令a = k * b + r; (k

洛谷P5490扫描线

0是最小的数字,将一个线段看成一个区间,对于一个矩形,从下扫到上,入边为1,而出边为-1,意思是将这个区间上的所有点加1(区间修改).把线段表示为Line[i],其中记录了l,r,h,tag,左右端点,高度,入边还是出边(1或-1) 那么每次区间修改后不为0的区间它的值可能是1,2,3或者是其它数字,这不好统计,可以将它转化一下,0是不是表示没有被覆盖过的地方,我们只要统计0的个数然后用总长减去

Python案例 | 使用四阶龙格-库塔法计算Burgers方程

使用四阶龙格-库塔法计算Burgers方程 引言求解过程完整代码 引言 Burgers方程产生于应用数学的各个领域,包括流体力学、非线性声学、气体动力学和交通流。它是一个基本的偏微分方程,可以通过删除压力梯度项从速度场的Navier-Stokes方程导出。对于黏度系数较小的情况( ν = 0.01 / π \nu = 0.01/ \pi ν=0.01/π),Burgers方程会

强化学习深入学习(一):价值函数和贝尔曼方程

文章目录 0. 引言1. 回报(Return)2. 价值函数(Value Function)3. 贝尔曼期望方程(Bellman Expectation Equation)4. 贝尔曼最优方程(Bellman Optimality Equation)总结 0. 引言 强化学习(Reinforcement Learning, RL)是一种机器学习方法,通过与环境的交互来学习如何