解决ax+by=c,不定方程(扩展欧几里得)

2024-09-05 21:38

本文主要是介绍解决ax+by=c,不定方程(扩展欧几里得),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先有几个定理我们需要知道,在这里我也会一一证明。

——————————————————————————————————————

定理1:gcd(a,b)==gcd(b,a%b);这个是欧几里得提出并证明的。 (%是取余的意思,在数学中

可用mod表示);

以下是证明过程

——————————————————————————————————————

令a = k * b + r; (k为整数);=> r = a%b;

设d是a,b的任意一个公约数。=> d|a, d|b(d|a的意思是d能被a整除);

又 r = k * b - a    =>d|(k*b - a);

以上可得d|b, d|(a%b),   =>d是b, a % b的公约数;

以上得 d既是a,b的公约数,又是b, a % b的公约数;

以上可得 gcd(a, b) == gcd(b, a%b);

证毕

——————————————————————————————————————


定理2:a*x + b*y ==gcd(a,b)一定存在解。这个定理又叫裴蜀定理,或贝祖定理。

以下会证明过程

——————————————————————————————————————

现在还不会............

——————————————————————————————————————



以下是求解 a*x +b*y  == gcd(a,b)的过程。

——————————————————————————————————————

当 b = 0时,a * x == gcd(a,0) == a;  =>x=1,y=0;

当a>b>0时:

由定理1得gcd(a,b) == gcd(b,a%b);

易得 a*X1 + b*Y1 == b * X2 + (a % b) * Y2;

=> a*X1 + b*Y1 == b * X2 +(a-[a / b] * b) * Y2;  (此处的/是不带余除法,也就是c++中的/);

=> a*X1 + b*Y1 == a * Y2 + b * (X2 - [a / b] * y2);

以上可得 1. X1 == Y2;

               2.Y1 == X2 - [a / b] * y2;

显然 以上两个方程式可以一直递归下去;

我们只要递归到b == 0的时候,就能求出Xn = 1, Yn = 0。然后我们一直往前回溯就能求出

X1,Y1;

代码如下:

#include<stdio.h>
int exgcd(int a, int b, int &x, int &y);
int main()
{int a, b, x = 0, y = 0;scanf("%d %d",&a, &b);int gcd = exgcd(a,b,x,y);printf("%d %d %d\n", gcd, x, y);return 0;
} int exgcd(int a, int b, int &x, int &y)
{if(b>a)return exgcd( b,  a,  y,  x);if(b==0){x = 1, y = 0;return a;}int r=exgcd(b, a%b, x, y);int temp = x;x = y;y = temp - (a/b) * y;return r;}

以上是求 a*x +b*y == gcd(a,b)某一组特解X1,Y1的过程

所以a*x + b*y == gcd(a,b)的通解为 X = X1 - b/gcd(a,b)*t

                                                        Y = Y1 + a/gcd(a,b)*t        t为任意整数。

——————————————————————————————————————



以下就是求ax + by = c的过程。为了好表示,我们将上一步的ax + by == gcd(a,b) 等价为

 am + bn == gcd(a,b).

——————————————————————————————————————

当c % gcd(a,b) == 0 时有解,令 k * gcd(a,b) == c;

=> k*a*m + k*b*n == k*gcd(a,b);

=>x == k*m == c*m/gcd(a,b)  ,  y == k*n == c*n/gcd(a,b) ;


设 X0 ,Y0 是 a*x + by 的某一特解。则 该不定方程的通解为

X = X0 - b/gcd(a,b)*t;

Y = Y0 + a/gcd(a,b)*t;            t为任意一个整数

X = (c*M0 - b*t)/gcd(a,b);

Y = (c*N0 + a*t)/gcd(a,b);

——————————————————————————————————————



综上求解不定方程a*x + b*y == c的步骤为

1.  先用扩展欧几里得求出 a*m + b* y ==gcd(a,b)的一组特解 M0,N0;

2.  求出a*x + b*y ==c 的通解为    X = (c*M0 - b*t)/gcd(a,b);

                                                     Y = (c*N0 + a*t)/gcd(a,b);




这篇关于解决ax+by=c,不定方程(扩展欧几里得)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140143

相关文章

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

springboot报错Invalid bound statement (not found)的解决

《springboot报错Invalidboundstatement(notfound)的解决》本文主要介绍了springboot报错Invalidboundstatement(not... 目录一. 问题描述二.解决问题三. 添加配置项 四.其他的解决方案4.1 Mapper 接口与 XML 文件不匹配

Python中ModuleNotFoundError: No module named ‘timm’的错误解决

《Python中ModuleNotFoundError:Nomodulenamed‘timm’的错误解决》本文主要介绍了Python中ModuleNotFoundError:Nomodulen... 目录一、引言二、错误原因分析三、解决办法1.安装timm模块2. 检查python环境3. 解决安装路径问题

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

Java报NoClassDefFoundError异常的原因及解决

《Java报NoClassDefFoundError异常的原因及解决》在Java开发过程中,java.lang.NoClassDefFoundError是一个令人头疼的运行时错误,本文将深入探讨这一问... 目录一、问题分析二、报错原因三、解决思路四、常见场景及原因五、深入解决思路六、预http://www

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat