解决ax+by=c,不定方程(扩展欧几里得)

2024-09-05 21:38

本文主要是介绍解决ax+by=c,不定方程(扩展欧几里得),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先有几个定理我们需要知道,在这里我也会一一证明。

——————————————————————————————————————

定理1:gcd(a,b)==gcd(b,a%b);这个是欧几里得提出并证明的。 (%是取余的意思,在数学中

可用mod表示);

以下是证明过程

——————————————————————————————————————

令a = k * b + r; (k为整数);=> r = a%b;

设d是a,b的任意一个公约数。=> d|a, d|b(d|a的意思是d能被a整除);

又 r = k * b - a    =>d|(k*b - a);

以上可得d|b, d|(a%b),   =>d是b, a % b的公约数;

以上得 d既是a,b的公约数,又是b, a % b的公约数;

以上可得 gcd(a, b) == gcd(b, a%b);

证毕

——————————————————————————————————————


定理2:a*x + b*y ==gcd(a,b)一定存在解。这个定理又叫裴蜀定理,或贝祖定理。

以下会证明过程

——————————————————————————————————————

现在还不会............

——————————————————————————————————————



以下是求解 a*x +b*y  == gcd(a,b)的过程。

——————————————————————————————————————

当 b = 0时,a * x == gcd(a,0) == a;  =>x=1,y=0;

当a>b>0时:

由定理1得gcd(a,b) == gcd(b,a%b);

易得 a*X1 + b*Y1 == b * X2 + (a % b) * Y2;

=> a*X1 + b*Y1 == b * X2 +(a-[a / b] * b) * Y2;  (此处的/是不带余除法,也就是c++中的/);

=> a*X1 + b*Y1 == a * Y2 + b * (X2 - [a / b] * y2);

以上可得 1. X1 == Y2;

               2.Y1 == X2 - [a / b] * y2;

显然 以上两个方程式可以一直递归下去;

我们只要递归到b == 0的时候,就能求出Xn = 1, Yn = 0。然后我们一直往前回溯就能求出

X1,Y1;

代码如下:

#include<stdio.h>
int exgcd(int a, int b, int &x, int &y);
int main()
{int a, b, x = 0, y = 0;scanf("%d %d",&a, &b);int gcd = exgcd(a,b,x,y);printf("%d %d %d\n", gcd, x, y);return 0;
} int exgcd(int a, int b, int &x, int &y)
{if(b>a)return exgcd( b,  a,  y,  x);if(b==0){x = 1, y = 0;return a;}int r=exgcd(b, a%b, x, y);int temp = x;x = y;y = temp - (a/b) * y;return r;}

以上是求 a*x +b*y == gcd(a,b)某一组特解X1,Y1的过程

所以a*x + b*y == gcd(a,b)的通解为 X = X1 - b/gcd(a,b)*t

                                                        Y = Y1 + a/gcd(a,b)*t        t为任意整数。

——————————————————————————————————————



以下就是求ax + by = c的过程。为了好表示,我们将上一步的ax + by == gcd(a,b) 等价为

 am + bn == gcd(a,b).

——————————————————————————————————————

当c % gcd(a,b) == 0 时有解,令 k * gcd(a,b) == c;

=> k*a*m + k*b*n == k*gcd(a,b);

=>x == k*m == c*m/gcd(a,b)  ,  y == k*n == c*n/gcd(a,b) ;


设 X0 ,Y0 是 a*x + by 的某一特解。则 该不定方程的通解为

X = X0 - b/gcd(a,b)*t;

Y = Y0 + a/gcd(a,b)*t;            t为任意一个整数

X = (c*M0 - b*t)/gcd(a,b);

Y = (c*N0 + a*t)/gcd(a,b);

——————————————————————————————————————



综上求解不定方程a*x + b*y == c的步骤为

1.  先用扩展欧几里得求出 a*m + b* y ==gcd(a,b)的一组特解 M0,N0;

2.  求出a*x + b*y ==c 的通解为    X = (c*M0 - b*t)/gcd(a,b);

                                                     Y = (c*N0 + a*t)/gcd(a,b);




这篇关于解决ax+by=c,不定方程(扩展欧几里得)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140143

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Mysql8.0修改配置文件my.ini的坑及解决

《Mysql8.0修改配置文件my.ini的坑及解决》使用记事本直接编辑my.ini文件保存后,可能会导致MySQL无法启动,因为MySQL会以ANSI编码读取该文件,解决方法是使用Notepad++... 目录Myhttp://www.chinasem.cnsql8.0修改配置文件my.ini的坑出现的问题

SpringBoot项目删除Bean或者不加载Bean的问题解决

《SpringBoot项目删除Bean或者不加载Bean的问题解决》文章介绍了在SpringBoot项目中如何使用@ComponentScan注解和自定义过滤器实现不加载某些Bean的方法,本文通过实... 使用@ComponentScan注解中的@ComponentScan.Filter标记不加载。@C

MySQL8.0找不到my.ini如何解决

《MySQL8.0找不到my.ini如何解决》在配置MySQL主从复制时,发现找不到my.ini配置文件,通过检查路径和打开隐藏文件夹,最终在C:ProgramDataMySQLMySQLSer... 目录问题描述解决方法总结问题描述今天在配置mysql主从复制的时候发现,找不到my.ini这个配置文件。

Mybatis提示Tag name expected的问题及解决

《Mybatis提示Tagnameexpected的问题及解决》MyBatis是一个开源的Java持久层框架,用于将Java对象与数据库表进行映射,它提供了一种简单、灵活的方式来访问数据库,同时也... 目录概念说明MyBATis特点发现问题解决问题第一种方式第二种方式问题总结概念说明MyBatis(原名

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora