高精度计算(代码加解析,洛谷p1601,p1303)除法待更新

2024-09-08 01:28

本文主要是介绍高精度计算(代码加解析,洛谷p1601,p1303)除法待更新,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

高精度加法

高精度减法

高精度乘法


高精度加法

我们知道在c++语言中任何数据类型都有一定的表示范围。当两个被加数很大时,正常加法不能得到精确解。在小学,我们做加法都采用竖式方法。那么我们也只需要按照加法进位的方式就能得到最终解。

  8 5 6
+ 2 5 5
-------
1 1 1 1

加法进位:

c[i] = a[i] + b[i];
if(c[i] >= 10){c[i] %= 10;c[i+1]++;
}

按位相加求和:

    int len = s1.length();int carry = 0;for(int i = len-1; i >= 0; i--){int tmp = s1[i] - '0' + s2[i] - '0' + carry;carry = tmp/10;tmp %= 10;ret = char(tmp + '0') + ret;}if(carry != 0) ret = char(carry + '0') + ret;

 完整代码:

#include<iostream>
#include<string>
using namespace std;int main()
{string s1,s2,ret;cin >> s1 >> s2;int len1 = s1.length();int len2 = s2.length();// 不论s1,s2谁短,高位补0补到一样长if(len1<len2){for(int i=1;i<=len2-len1;i++)s1="0"+s1;}else{for(int i=1;i<=len1-len2;i++)s2="0"+s2;}int len = s1.length();  //得到两个字符串的长度int carry = 0;  // 记录进位// i从字符串最后一位向前走,也就是从两个数的个位向高位走for(int i = len-1; i >= 0; i--){// 相当于c[i] = a[i] + b[i],如果c[i]>=10, c[i]%=10, c[i+1]++;int tmp = s1[i] - '0' + s2[i] - '0' + carry; //字符转换成数字,要-'0'carry = tmp/10;tmp %= 10;ret = char(tmp + '0') + ret; //把每个新位放到原字符串前面}//如果carry位不等于0,则表明两个数的最高位相加还有进位if(carry != 0) ret = char(carry + '0') + ret;  cout << ret;
}

高精度减法

类似加法,也可以用竖式求解。需要注意的是,被减数必须比减数大,同时需要处理借位。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{int a[256],b[256],c[256],lena,lenb,lenc,i;char n[256],n1[256],n2[256];memset(a,0,sizeof(a));memset(b,0,sizeof(b));memset(c,0,sizeof(c));printf("Input minuend:");	gets(n1);printf("Input subtrahend:");	gets(n2);if(strlen(n1) < strlen(n2) || (strlen(n1) == strlen(n2) && strcmp(n1,n2) < 0)){strcpy(n,n1);strcpy(n1,n2);strcpy(n2,n);cout << "-"; 	//因为交换了减数和被减数,结果为负数 }lena = strlen(n1);lenb = strlen(n2);for(i = 0; i <= lena-1; i++) a[lena-i] = int(n1[i] - '0');	//被减数放入a数组 for(i = 0; i <= lenb-1; i++) b[lenb-i] = int(n2[i] - '0');	//减数放入b数组i= 1;while(i <= lena || i <= lenb){if(a[i] < b[i]){a[i]+=10;	//高位借1 a[i+1]--;}c[i] = a[i] - b[i];	//对应位相减i++; } lenc = i;while(c[lenc] == 0 && lenc > 1) lenc--;	//最高位0不输出for(i = lenc; i >= 1; i--) cout << c[i];cout << endl;return 0; 
}

高精度乘法

类似加法,可以用竖式求乘法。在做乘法运算时,同样也有进位。同时对每一位进行乘法运算时,必须进行错位相加。

     8  5  6
*       2  5 
----------------4  2  8  0
1 7  1  2
----------------
2 1  4  0  0
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{char a1[101],b1[101];int a[101],b[101],c[10001],lena,lenb,lenc,i,j,x;memset(a,0,sizeof(a));memset(b,0,sizeof(b));memset(c,0,sizeof(c));scanf("%s",a1);scanf("%s",b1);lena = strlen(a1); lenb = strlen(b1);for(i = 0; i <= lena-1; i++) a[lena-i] = int(a1[i] - 48);	for(i = 0; i <= lenb-1; i++) b[lenb-i] = int(b1[i] - 48);	for(i = 1; i <= lena; i++){x = 0;for(j = 1; j <= lenb; j++){c[i+j-1] += a[i]*b[j] + x;	//当前乘机+上次乘机进位+原数 x = c[i+j-1] / 10;c[i+j-1] %= 10;}c[i+lenb] = x;	//进位 } lenc = lena + lenb;while(c[lenc] == 0 && lenc > 1)	lenc--;	//删除前导0 for(i = lenc; i > 0; i--) cout << c[i];cout << endl; return 0; 
}

还有一种思路,把每一位的乘积和加起来先不做处理。最后再去处理计算进位。

        7    8    9
*            2    3
----------------------21   24    2714   16   18
----------------------14   37   42    271 (1) 8 (4) 1 (4) 4 (2) 7

这篇关于高精度计算(代码加解析,洛谷p1601,p1303)除法待更新的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146721

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决