Python案例 | 使用四阶龙格-库塔法计算Burgers方程

2024-09-05 18:12

本文主要是介绍Python案例 | 使用四阶龙格-库塔法计算Burgers方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用四阶龙格-库塔法计算Burgers方程

  • 引言
  • 求解过程
  • 完整代码

引言

Burgers方程产生于应用数学的各个领域,包括流体力学、非线性声学、气体动力学和交通流。它是一个基本的偏微分方程,可以通过删除压力梯度项从速度场的Navier-Stokes方程导出。对于黏度系数较小的情况( ν = 0.01 / π \nu = 0.01/ \pi ν=0.01/π),Burgers方程会导致经典数值方法难以解决的激波形成。在一个空间维度上,带Dirichlet边界条件的Burger方程为:
u t + u u x − ν u x x = 0 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] u ( 0 , x ) = − s i n ( π x ) u ( t , − 1 ) = u ( t , 1 ) = 0 \begin{align*} & u_t + uu_x - \nu u_{xx} = 0 , x \in [-1,1], t \in [0,1] & \\ & u(0,x) = -sin(\pi x) & \\ & u(t,-1) = u(t,1) = 0 & \end{align*} ut+uuxνuxx=0,x[1,1],t[0,1]u(0,x)=sin(πx)u(t,1)=u(t,1)=0

求解过程

  1. 首先,定义一个函数:
    f ( u , t , d x , ν ) = − u u x + ν u x x f(u,t,dx,\nu)= -uu_x + \nu u_{xx} f(u,t,dx,ν)=uux+νuxx
def f(u, t, dx, nu=0.01/np.pi):return -u*dudx(u, dx) + nu*d2udx2(u, dx)
  1. 利用中心有限差分法,计算一阶导数 u x u_x ux
    f ′ ( x 0 ) ≈ f ( x 0 + △ x ) − f ( x 0 − △ x ) 2 △ x f'(x_0) \approx \frac{f(x_0+\bigtriangleup x) - f(x_0-\bigtriangleup x)}{2\bigtriangleup x} f(x0)2xf(x0+x)f(x0x)
def dudx(u, dx):"""Approximate the first derivative using the centered finite differenceformula."""first_deriv = np.zeros_like(u)# wrap to compute derivative at endpointsfirst_deriv[0] = (u[1] - u[-1]) / (2*dx)first_deriv[-1] = (u[0] - u[-2]) / (2*dx)# compute du/dx for all the other pointsfirst_deriv[1:-1] = (u[2:] - u[0:-2]) / (2*dx)return first_deriv
  1. 利用中心有限差分法,计算二阶导数 u x x u_{xx} uxx
    f ′ ′ ( x 0 ) ≈ f ( x 0 + △ x ) − 2 f ( x 0 ) + f ( x 0 − △ x ) △ x 2 f''(x_0) \approx \frac{f(x_0+\bigtriangleup x) - 2f(x_0) + f(x_0-\bigtriangleup x)}{\bigtriangleup x^2} f′′(x0)x2f(x0+x)2f(x0)+f(x0x)
def d2udx2(u, dx):"""Approximate the second derivative using the centered finite differenceformula."""second_deriv = np.zeros_like(u)  # 创建一个新数组second_deriv,其形状和类型与给定数组u相同,但是所有元素都被设置为 0。# wrap to compute second derivative at endpointssecond_deriv[0] = (u[1] - 2*u[0] + u[-1]) / (dx**2)second_deriv[-1] = (u[0] - 2*u[-1] + u[-2]) / (dx**2)# compute d2u/dx2 for all the other pointssecond_deriv[1:-1] = (u[2:] - 2*u[1:-1] + u[0:-2]) / (dx**2)return second_deriv
  1. 定义四阶龙格-库塔计算公式
    对一般微分方程有:
    { y ′ = f ( x , y ) y ( x 0 ) = y 0 \begin{cases} y'=f(x,y)\\ y(x_0)=y_0 \end{cases} {y=f(x,y)y(x0)=y0
    在x的取值范围内将其离散为 n n n段,定义步长,令第 n n n步对应的函数值为 y n y_n yn。于是通过一系列的推导可以得到下一步的 y n + 1 y_{n+1} yn+1值为
    y n + 1 = y n + h 6 ( K 1 + 2 K 2 + 2 K 3 + K 4 ) y_{n+1}=y_n+\frac{h}{6} (K_1+2K_2+2K_3+K_4) yn+1=yn+6h(K1+2K2+2K3+K4)
    其中
    { K 1 = f ( x n , y n ) K 2 = f ( x n + h 2 , y n + h 2 K 1 ) K 3 = f ( x n + h 2 , y n + h 2 K 2 ) K 4 = f ( x n + h , y n + h K 3 ) \begin{cases} K_1=f(x_n, y_n) \\ K_2=f(x_n+\frac{h}{2}, y_n+\frac{h}{2}K_1) \\ K_3=f(x_n+\frac{h}{2},y_n+\frac{h}{2}K_2) \\ K_4=f(x_n+h,y_n+hK_3) \end{cases} K1=f(xn,yn)K2=f(xn+2h,yn+2hK1)K3=f(xn+2h,yn+2hK2)K4=f(xn+h,yn+hK3)
def rk4(f, u, t, dx, h):"""Fourth-order Runge-Kutta method for computing u at the next time step."""k1 = f(u, t, dx)k2 = f(u + 0.5*h*k1, t + 0.5*h, dx)k3 = f(u + 0.5*h*k2, t + 0.5*h, dx)k4 = f(u + h*k3, t + h, dx)return u + (h/6)*(k1 + 2*k2 + 2*k3 + k4)
  1. Burgers方程计算
    位移初始边界条件: x 0 = − 1 x_0=-1 x0=1 x N = 1 x_N=1 xN=1
    位移离散点个数: N = 512 N=512 N=512
    时间初始边界条件: t 0 = 0 t_0=0 t0=0 t K = 500 t_K=500 tK=500
    时间离散点个数: K = 500 K=500 K=500
x = np.linspace(x0, xN, N)  # evenly spaced spatial points
dx = (xN - x0) / float(N - 1)  # space between each spatial point
dt = (tK - t0) / float(K)  # space between each temporal point
h = 2e-6  # time step for runge-kutta methodu = np.zeros(shape=(K, N))
# u[0, :] = 1 + 0.5*np.exp(-(x**2))  # compute u at initial time step
u[0, :] = -np.sin(np.pi*x)for idx in range(K-1):  # for each temporal point perform runge-kutta methodti = t0 + dt*idxU = u[idx, :]for step in range(1000):t = ti + h*stepU = rk4(f, U, t, dx, h)u[idx+1, :] = U
  1. 计算结果可视化
plt.imshow(u.T, interpolation='nearest', cmap='rainbow',extent=[t0, tK, x0, xN], origin='lower', aspect='auto')
plt.xlabel('t')
plt.ylabel('x')
plt.colorbar()
plt.show()

在这里插入图片描述

完整代码

""" Solving the Burgers' Equation using a 4th order Runge-Kutta method """import numpy as np
import matplotlib.pyplot as pltdef rk4(f, u, t, dx, h):"""Fourth-order Runge-Kutta method for computing u at the next time step."""k1 = f(u, t, dx)k2 = f(u + 0.5*h*k1, t + 0.5*h, dx)k3 = f(u + 0.5*h*k2, t + 0.5*h, dx)k4 = f(u + h*k3, t + h, dx)return u + (h/6)*(k1 + 2*k2 + 2*k3 + k4)def dudx(u, dx):"""Approximate the first derivative using the centered finite differenceformula."""first_deriv = np.zeros_like(u)# wrap to compute derivative at endpointsfirst_deriv[0] = (u[1] - u[-1]) / (2*dx)first_deriv[-1] = (u[0] - u[-2]) / (2*dx)# compute du/dx for all the other pointsfirst_deriv[1:-1] = (u[2:] - u[0:-2]) / (2*dx)return first_derivdef d2udx2(u, dx):"""Approximate the second derivative using the centered finite differenceformula."""second_deriv = np.zeros_like(u)  # 创建一个新数组second_deriv,其形状和类型与给定数组u相同,但是所有元素都被设置为 0。# wrap to compute second derivative at endpointssecond_deriv[0] = (u[1] - 2*u[0] + u[-1]) / (dx**2)second_deriv[-1] = (u[0] - 2*u[-1] + u[-2]) / (dx**2)# compute d2u/dx2 for all the other pointssecond_deriv[1:-1] = (u[2:] - 2*u[1:-1] + u[0:-2]) / (dx**2)return second_derivdef f(u, t, dx, nu=0.01/np.pi):return -u*dudx(u, dx) + nu*d2udx2(u, dx)def make_square_axis(ax):ax.set_aspect(1 / ax.get_data_ratio())def burgers(x0, xN, N, t0, tK, K):x = np.linspace(x0, xN, N)  # evenly spaced spatial pointsdx = (xN - x0) / float(N - 1)  # space between each spatial pointdt = (tK - t0) / float(K)  # space between each temporal pointh = 2e-6  # time step for runge-kutta methodu = np.zeros(shape=(K, N))# u[0, :] = 1 + 0.5*np.exp(-(x**2))  # compute u at initial time stepu[0, :] = -np.sin(np.pi*x)for idx in range(K-1):  # for each temporal point perform runge-kutta methodti = t0 + dt*idxU = u[idx, :]for step in range(1000):t = ti + h*stepU = rk4(f, U, t, dx, h)u[idx+1, :] = U# plt.imshow(u, extent=[x0, xN, t0, tK])plt.imshow(u.T, interpolation='nearest', cmap='rainbow',extent=[t0, tK, x0, xN], origin='lower', aspect='auto')plt.xlabel('t')plt.ylabel('x')plt.colorbar()plt.show()if __name__ == '__main__':# burgers(-10, 10, 1024, 0, 50, 500)burgers(-1, 1, 512, 0, 1, 500)

这篇关于Python案例 | 使用四阶龙格-库塔法计算Burgers方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139700

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal