基于信号功率谱特征和GRNN广义回归神经网络的信号调制类型识别算法matlab仿真

本文主要是介绍基于信号功率谱特征和GRNN广义回归神经网络的信号调制类型识别算法matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

................................................................
%调制识别
len1 = func_fsk_psk_check(p1);
len2 = func_fsk_psk_check(p2);
len3 = func_fsk_psk_check(p3);
len4 = func_fsk_psk_check(p4);%根据参数获得FSK和PSK区分参数
Level= (mean([len1,len2]) - mean([len3,len4]))/2;%分别提取FSK和PSK的不同调制方式的特征参数
char1   = real(func_para_check(y_2FSKn,N0));
char2   = real(func_para_check(y_4FSKn,N0));
char3   = real(func_para_check(y_2PSKn,N0));
char4   = real(func_para_check(y_4PSKn,N0));%通过GRNN神经网络进行训练
char    = [char1;char2]';
T       = [1;2]';
net_fsk = newgrnn(char,T,1.2);char    = [char3;char4]';
T       = [1;2]';
net_psk = newgrnn(char,T,1.2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%加载信号进行测试
%通过大量的循环测试,计算正确率
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
zql  = 0;%运行的时候,尽量将下面的两个参数指标设置大点,这样结果才精确
MTKL  = 50;
SNRS  = [-10:1:20];
Bers  = zeros(length(SNRS),1);for jj = 1:length(SNRS)for i = 1:MTKL[SNRS(jj),i]rng(i);%长度N      = N0;%SNRSNR    = SNRS(jj);%2FSKy_2FSK = func_2FSK(N);%4FSKy_4FSK = func_4FSK(N);%BPSKy_2PSK = func_2PSK(N);%QPSKy_4PSK = func_4PSK(N);%设置单独的一种调制信号tmps   = [2,2,2,2];%4PSKif tmps(1) == 1datas = y_2FSK;endif tmps(1) == 2datas = y_4FSK;endif tmps(1) == 3datas = y_2PSK;endif tmps(1) == 4datas = y_4PSK;enddatas  = func_multipath(datas);data   = func_add_noise(datas,SNR); [p,f] = func_power(data,Ns);len   = func_fsk_psk_check(p);flag  = 0;%首先进行FSK和PSK两种模式的区分if len >= Level%为FSK模式%根据识别参数进行调制类型的辨识char = real(func_para_check(data,length(data)));T    = round(sim(net_fsk,char'));if T == 1flag = 1;endif T == 2flag = 2;endelse%为PSK模式%根据识别参数进行调制类型的辨识char = real(func_para_check(data,length(data)));T    = round(sim(net_psk,char'));if T == 1flag = 3;endif T == 2flag = 4;endendif flag == tmps(1)zql = zql + 1;endend%识别正确率Bers(jj) = zql/MTKL;zql      = 0;
endR = 100*mean(Bers,2);
figure;
plot(SNRS,R,'b-o','linewidth',2);
grid on
xlabel('snr');
ylabel('调制识别率');
axis([min(SNRS)-1,max(SNRS)+1,0,110]);save r1.mat SNRS R
01_131m

4.算法理论概述

        本课题,我们主要对MPSK和MFSK调制类型进行识别。在进行信号调制方式区分之前,首先需要对PSK和FSK进行区分,提出了一种基于信号功率谱的PSK和FSK调制方式的识别方法。信号的功率谱计算过程,是一个计算随机过程的统计特性的过程,其中平稳随机过程的功率谱计算过程是一个确定的函数,计算信号的功率谱的过程即功率谱估计。是通过给定的信号样本去估计平稳随机信号的功率谱密度,通过计算信号的功率谱估计可以分析信号的能量随着频率分布的变化情况。

      信号的功率谱计算方法可以分为经典谱估计方法和现代谱估计方法目前应用较为广泛的是经典谱估计算法。经典谱估计方法主要分为直接法和间接法两大类别,本文将通过直接法对调制信号的功率谱进行估计,直接法的主要流程是先计算调制信号的快速傅里叶变换,将调制信号从时域变换到频域,然后将频域结果与其共轭结果相乘,从而得到信号的功率谱估计。

       该算法的整体流程图如下所示

        GRNN,即General Regression Neural Network,中文全称为广义回归神经网络,是由The Lockheed Palo Alto研究实验室在1991年提出的。GRNN是一种新型的基于非线性回归理论的神经网络模型[43,44]。GRNN是建立在非参数核回归基础之上的,该神经网络是以测试样本为后验条件,并从观测样本中计算得到自变量和因变量之间的概率密度函数,然后在计算出因变量关于自变量的回归值。由于GRNN不需要规定模型的类型,只需要设置神经网络的光滑因子参数,GRNN神经网络的光滑因子参数的取值对神经网络的输出影响较大,当光滑因子参数较大的时候,其对应的神经元所覆盖的输入区域就越大;当光滑因子参数较小的时候,神经网络对应的径向基函数曲线较陡,因此神经网络输出结果更接近期望值,但此时光滑度越差。

       GRNN结构如图所示,整个网络包括输入层、模式层、求和层与输出层。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于信号功率谱特征和GRNN广义回归神经网络的信号调制类型识别算法matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/355261

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pydantic中Optional 和Union类型的使用

《Pydantic中Optional和Union类型的使用》本文主要介绍了Pydantic中Optional和Union类型的使用,这两者在处理可选字段和多类型字段时尤为重要,文中通过示例代码介绍的... 目录简介Optional 类型Union 类型Optional 和 Union 的组合总结简介Pyd

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确