优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享)

本文主要是介绍优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

原文信息(包括题目、发表期刊、原文链接等):First Order Methods Beyond Convexity and Lipschitz Gradient Continuity with Applications to Quadratic Inverse Problems
原文作者:Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd
代码分享者:李朋

1 问题描述

考虑下面的二次规划反问题
min ⁡ { Ψ ( x ) : = g ( x ) + θ f ( x ) : x ∈ R d } \min\Big\{ \Psi(x):=g(x) + \theta f(x): x\in \mathbb{R}^{d}\Big\} min{Ψ(x):=g(x)+θf(x):xRd}

其中 g ( x ) = 1 4 ∑ i = 1 m ( x T A i x − b i ) 2 , f ( x ) = ∥ x ∥ 1 g(x) = \frac{1}{4}\sum_{i=1}^{m}(x^{T}A_{i}x - b_{i})^2, f(x) = \|x\|_{1} g(x)=41i=1m(xTAixbi)2,f(x)=x1,而且 A i A_{i} Ai是对称矩阵。

2 求解方法

在给出求解方法之前,我们首先定义
p λ ( x ) = λ ∇ g ( x ) − ∇ h ( x ) p_{\lambda}(x)=\lambda \nabla g(x)-\nabla h(x) pλ(x)=λg(x)h(x)
和软阈值算子
S τ ( y ) = max ⁡ { ∣ y ∣ − τ , 0 } sgn ( y ) = max ⁡ ( y − τ , 0 ) − max ⁡ ( − y − τ , 0 ) ( 5.1 ) S_{\tau}(y)=\max\{|y|-\tau, 0\}\text{sgn}(y)=\max(y-\tau,0) - \max(-y-\tau,0) \qquad (5.1) Sτ(y)=max{yτ,0}sgn(y)=max(yτ,0)max(yτ,0)(5.1)
为保证函数 g ( x ) , f ( x ) g(x),f(x) g(x),f(x)L-smad,我们令
h ( x ) = 1 4 ∥ x ∥ 2 4 + 1 2 ∥ x ∥ 2 2 , h(x) = \frac{1}{4} \| x \|_2^4 + \frac{1}{2} \| x \|_2^2, h(x)=41x24+21x22,
具体见原文引理5.1。

本文的求解方法主要根据原文的命题5.1,如下所示

命题5.1 ( l 1 l_{1} l1范数正则化的Bregman近似公式) 令 f = ∥ ⋅ ∥ 1 f=\|\cdot\|_{1} f=1且对 x ∈ R d x\in \mathbb{R}^{d} xRd,令 v ( x ) : = S λ θ ( p λ ( x ) ) v(x):=S_{\lambda \theta}(p_{\lambda}(x)) v(x):=Sλθ(pλ(x))。那么,可得 x + = T λ ( x ) x^{+}=T_{\lambda}(x) x+=Tλ(x)
x + = − t ∗ v ( x ) = t ∗ S λ θ ( ∇ h ( x ) − λ ∇ g ( x ) ) ( 5.2 ) x^{+}=-t^{*}v(x)=t^{*}S_{\lambda\theta}(\nabla h(x)-\lambda\nabla g(x)) \qquad (5.2) x+=tv(x)=tSλθ(h(x)λg(x))(5.2)

是显示公式,其中 t ∗ t^{*} t是下面方程的唯一正实根,
t 3 ∥ v ( x ) ∥ 2 2 + t − 1 = 0. ( 5.3 ) t^{3}\|v(x)\|_{2}^{2}+t-1=0. \qquad (5.3) t3v(x)22+t1=0.(5.3)

3 代码实现

在本次仿真中,我们采用Julia语言编写一个求解二次规划反问题的算法 (5-2)。

(1) 用using 添加一些要用到的库。

using Roots
using LinearAlgebra
using SparseArrays
using Distributions
using Random
using Printf
using Plots
using Polynomials

(2) 根据公式 (5-1) 定义软阈值函数

function compute_softThreshold(y,τ)p = max.(y.-τ,0) - max.(-y.-τ,0);return p;
end

(3)根据公式(5-3) 计算 t ∗ t^{*} t

function find_positiveRoot(S)t = variable();v = sum(S.^2);f = t^3*v + t -1;t_opt = find_zero(f,(0,1));return t_opt;
end

(4) 计算 g ( x ) = 1 4 ∑ i = 1 m ( x T A i x − b i ) 2 g(x) = \frac{1}{4}\sum_{i=1}^{m}(x^{T}A_{i}x - b_{i})^2 g(x)=41i=1m(xTAixbi)2的导数

function derivative_g(A,b,x,m,n)# compute the derivative of g(x)der = zeros(n,1);for k in range(1,m)der = der + (transpose(x)*A[k]*x.-b[k]).*(A[k]*x);endreturn der;
end

(5) 计算 h ( x ) = 1 4 ∥ x ∥ 2 4 + 1 2 ∥ x ∥ 2 2 h(x)=\frac{1}{4}\|x\|_{2}^{4}+\frac{1}{2}\|x\|_{2}^{2} h(x)=41x24+21x22的导数

function derivative_h(x)# compute the derivative of h(x)der = (sum(x.^2) + 1).*x;return der;
end

(6) 全局参数

# Global Parameters
MAXITE = 500;
m =3;
n = 2;

(7) 生成问题数据

θ = 0.5;Random.seed!(123);A = Array{Matrix}(undef,m);
b = Array{Float64}(undef,m); d = Normal(2,2);
for k in range(1,m)A[k] = rand(d,n,n)A[k] = (transpose(A[k])+A[k])./2
endfor k in range(1,m)b[k] = rand(d,1)[1];
end

(8) 根据引理5.1的结果可知 L ≥ ∑ i = 1 m 3 ∥ A i ∥ 2 + ∥ A i ∥ ∣ b i ∣ L\geq \sum_{i=1}^{m}3\|A_{i}\|^{2}+\|A_{i}\||b_{i}| Li=1m3∥Ai2+Ai∥∣bi。另外,根据定理 4.1 成立的条件 0 < λ L < 1 0<\lambda L<1 0<λL<1,可得 0 < λ < 1 L 0<\lambda<\frac{1}{L} 0<λ<L1

L = sum([3*norm(A[k]).^2 + norm(A[k])*norm(b[k]) for k =1:m])+1;
λ = 1/L;   #λ≤1/L

(9) 主程序

x = ones(n,1)
objval_vec = zeros(1,MAXITE);  #存储计算过程中目标函数值
x_vec = zeros(n,MAXITE);       #存储计算过程中变量值for k in range(1,MAXITE)#计算、存储当前目标函数值objval = sum([1/4*(transpose(x)*A[k]*x.-b[k])^2 for k=1:m]) .+ θ.*norm(x,1); objval_vec[1,k] = objval[1,1];  #存储当前变量值x_vec[:,k] = x; #计算函数g(x)、h(x)当前时刻的导数值xold = x;der_h = derivative_h(xold);der_g = derivative_g(A,b,xold,m,n);y = λ*der_g - der_h;τ = λ * θ;v = compute_softThreshold(y,τ);   #计算公式(5-2)中的软阈值算子部分   topt = find_positiveRoot(v);  #计算公式(5-2)中的 t*x = -topt.*v; # 根据公式(5-2) 求出下一时刻 x 的值
end
print("最优解:",x,"\n");
print("最小目标值:",objval_vec[end]);

(10) 画出目标函数值随计算步数的变化

K = range(1, MAXITE);
plot(K, [objval_vec[k] for k=1:MAXITE], yaxis=:log10,label="object value")

(11) 画出变量值随计算步数的变化

plot(x_vec[1,1:MAXITE], x_vec[2,1:MAXITE], arrow = :arrow)
scatter!([x_vec[1,1]], [x_vec[2,1]], markshape=:rect, marksize = 5, markercolor= :red, legend = false)
xlabel!("x1")
ylabel!("x2")

这篇关于优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349788

相关文章

利用c++判断水仙花数并输出示例代码

《利用c++判断水仙花数并输出示例代码》水仙花数是指一个三位数,其各位数字的立方和恰好等于该数本身,:本文主要介绍利用c++判断水仙花数并输出的相关资料,文中通过代码介绍的非常详细,需要的朋友可以... 以下是使用C++实现的相同逻辑代码:#include <IOStream>#include <vec

Java 接口定义变量的示例代码

《Java接口定义变量的示例代码》文章介绍了Java接口中的变量和方法,接口中的变量必须是publicstaticfinal的,用于定义常量,而方法默认是publicabstract的,必须由实现类... 在 Java 中,接口是一种抽象类型,用于定义类必须实现的方法。接口可以包含常量和方法,但不能包含实例

JAVA Calendar设置上个月时,日期不存在或错误提示问题及解决

《JAVACalendar设置上个月时,日期不存在或错误提示问题及解决》在使用Java的Calendar类设置上个月的日期时,如果遇到不存在的日期(如4月31日),默认会自动调整到下个月的相应日期(... 目录Java Calendar设置上个月时,日期不存在或错误提示java进行日期计算时如果出现不存在的

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

线程池ThreadPoolExecutor应用过程

《线程池ThreadPoolExecutor应用过程》:本文主要介绍如何使用ThreadPoolExecutor创建线程池,包括其构造方法、常用方法、参数校验以及如何选择合适的拒绝策略,文章还讨论... 目录ThreadPoolExecutor构造说明及常用方法为什么强制要求使用ThreadPoolExec

Nginx错误拦截转发 error_page的问题解决

《Nginx错误拦截转发error_page的问题解决》Nginx通过配置错误页面和请求处理机制,可以在请求失败时展示自定义错误页面,提升用户体验,下面就来介绍一下Nginx错误拦截转发error_... 目录1. 准备自定义错误页面2. 配置 Nginx 错误页面基础配置示例:3. 关键配置说明4. 生效

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性