优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享)

本文主要是介绍优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

原文信息(包括题目、发表期刊、原文链接等):First Order Methods Beyond Convexity and Lipschitz Gradient Continuity with Applications to Quadratic Inverse Problems
原文作者:Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd
代码分享者:李朋

1 问题描述

考虑下面的二次规划反问题
min ⁡ { Ψ ( x ) : = g ( x ) + θ f ( x ) : x ∈ R d } \min\Big\{ \Psi(x):=g(x) + \theta f(x): x\in \mathbb{R}^{d}\Big\} min{Ψ(x):=g(x)+θf(x):xRd}

其中 g ( x ) = 1 4 ∑ i = 1 m ( x T A i x − b i ) 2 , f ( x ) = ∥ x ∥ 1 g(x) = \frac{1}{4}\sum_{i=1}^{m}(x^{T}A_{i}x - b_{i})^2, f(x) = \|x\|_{1} g(x)=41i=1m(xTAixbi)2,f(x)=x1,而且 A i A_{i} Ai是对称矩阵。

2 求解方法

在给出求解方法之前,我们首先定义
p λ ( x ) = λ ∇ g ( x ) − ∇ h ( x ) p_{\lambda}(x)=\lambda \nabla g(x)-\nabla h(x) pλ(x)=λg(x)h(x)
和软阈值算子
S τ ( y ) = max ⁡ { ∣ y ∣ − τ , 0 } sgn ( y ) = max ⁡ ( y − τ , 0 ) − max ⁡ ( − y − τ , 0 ) ( 5.1 ) S_{\tau}(y)=\max\{|y|-\tau, 0\}\text{sgn}(y)=\max(y-\tau,0) - \max(-y-\tau,0) \qquad (5.1) Sτ(y)=max{yτ,0}sgn(y)=max(yτ,0)max(yτ,0)(5.1)
为保证函数 g ( x ) , f ( x ) g(x),f(x) g(x),f(x)L-smad,我们令
h ( x ) = 1 4 ∥ x ∥ 2 4 + 1 2 ∥ x ∥ 2 2 , h(x) = \frac{1}{4} \| x \|_2^4 + \frac{1}{2} \| x \|_2^2, h(x)=41x24+21x22,
具体见原文引理5.1。

本文的求解方法主要根据原文的命题5.1,如下所示

命题5.1 ( l 1 l_{1} l1范数正则化的Bregman近似公式) 令 f = ∥ ⋅ ∥ 1 f=\|\cdot\|_{1} f=1且对 x ∈ R d x\in \mathbb{R}^{d} xRd,令 v ( x ) : = S λ θ ( p λ ( x ) ) v(x):=S_{\lambda \theta}(p_{\lambda}(x)) v(x):=Sλθ(pλ(x))。那么,可得 x + = T λ ( x ) x^{+}=T_{\lambda}(x) x+=Tλ(x)
x + = − t ∗ v ( x ) = t ∗ S λ θ ( ∇ h ( x ) − λ ∇ g ( x ) ) ( 5.2 ) x^{+}=-t^{*}v(x)=t^{*}S_{\lambda\theta}(\nabla h(x)-\lambda\nabla g(x)) \qquad (5.2) x+=tv(x)=tSλθ(h(x)λg(x))(5.2)

是显示公式,其中 t ∗ t^{*} t是下面方程的唯一正实根,
t 3 ∥ v ( x ) ∥ 2 2 + t − 1 = 0. ( 5.3 ) t^{3}\|v(x)\|_{2}^{2}+t-1=0. \qquad (5.3) t3v(x)22+t1=0.(5.3)

3 代码实现

在本次仿真中,我们采用Julia语言编写一个求解二次规划反问题的算法 (5-2)。

(1) 用using 添加一些要用到的库。

using Roots
using LinearAlgebra
using SparseArrays
using Distributions
using Random
using Printf
using Plots
using Polynomials

(2) 根据公式 (5-1) 定义软阈值函数

function compute_softThreshold(y,τ)p = max.(y.-τ,0) - max.(-y.-τ,0);return p;
end

(3)根据公式(5-3) 计算 t ∗ t^{*} t

function find_positiveRoot(S)t = variable();v = sum(S.^2);f = t^3*v + t -1;t_opt = find_zero(f,(0,1));return t_opt;
end

(4) 计算 g ( x ) = 1 4 ∑ i = 1 m ( x T A i x − b i ) 2 g(x) = \frac{1}{4}\sum_{i=1}^{m}(x^{T}A_{i}x - b_{i})^2 g(x)=41i=1m(xTAixbi)2的导数

function derivative_g(A,b,x,m,n)# compute the derivative of g(x)der = zeros(n,1);for k in range(1,m)der = der + (transpose(x)*A[k]*x.-b[k]).*(A[k]*x);endreturn der;
end

(5) 计算 h ( x ) = 1 4 ∥ x ∥ 2 4 + 1 2 ∥ x ∥ 2 2 h(x)=\frac{1}{4}\|x\|_{2}^{4}+\frac{1}{2}\|x\|_{2}^{2} h(x)=41x24+21x22的导数

function derivative_h(x)# compute the derivative of h(x)der = (sum(x.^2) + 1).*x;return der;
end

(6) 全局参数

# Global Parameters
MAXITE = 500;
m =3;
n = 2;

(7) 生成问题数据

θ = 0.5;Random.seed!(123);A = Array{Matrix}(undef,m);
b = Array{Float64}(undef,m); d = Normal(2,2);
for k in range(1,m)A[k] = rand(d,n,n)A[k] = (transpose(A[k])+A[k])./2
endfor k in range(1,m)b[k] = rand(d,1)[1];
end

(8) 根据引理5.1的结果可知 L ≥ ∑ i = 1 m 3 ∥ A i ∥ 2 + ∥ A i ∥ ∣ b i ∣ L\geq \sum_{i=1}^{m}3\|A_{i}\|^{2}+\|A_{i}\||b_{i}| Li=1m3∥Ai2+Ai∥∣bi。另外,根据定理 4.1 成立的条件 0 < λ L < 1 0<\lambda L<1 0<λL<1,可得 0 < λ < 1 L 0<\lambda<\frac{1}{L} 0<λ<L1

L = sum([3*norm(A[k]).^2 + norm(A[k])*norm(b[k]) for k =1:m])+1;
λ = 1/L;   #λ≤1/L

(9) 主程序

x = ones(n,1)
objval_vec = zeros(1,MAXITE);  #存储计算过程中目标函数值
x_vec = zeros(n,MAXITE);       #存储计算过程中变量值for k in range(1,MAXITE)#计算、存储当前目标函数值objval = sum([1/4*(transpose(x)*A[k]*x.-b[k])^2 for k=1:m]) .+ θ.*norm(x,1); objval_vec[1,k] = objval[1,1];  #存储当前变量值x_vec[:,k] = x; #计算函数g(x)、h(x)当前时刻的导数值xold = x;der_h = derivative_h(xold);der_g = derivative_g(A,b,xold,m,n);y = λ*der_g - der_h;τ = λ * θ;v = compute_softThreshold(y,τ);   #计算公式(5-2)中的软阈值算子部分   topt = find_positiveRoot(v);  #计算公式(5-2)中的 t*x = -topt.*v; # 根据公式(5-2) 求出下一时刻 x 的值
end
print("最优解:",x,"\n");
print("最小目标值:",objval_vec[end]);

(10) 画出目标函数值随计算步数的变化

K = range(1, MAXITE);
plot(K, [objval_vec[k] for k=1:MAXITE], yaxis=:log10,label="object value")

(11) 画出变量值随计算步数的变化

plot(x_vec[1,1:MAXITE], x_vec[2,1:MAXITE], arrow = :arrow)
scatter!([x_vec[1,1]], [x_vec[2,1]], markshape=:rect, marksize = 5, markercolor= :red, legend = false)
xlabel!("x1")
ylabel!("x2")

这篇关于优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349788

相关文章

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,