优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享)

本文主要是介绍优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

原文信息(包括题目、发表期刊、原文链接等):First Order Methods Beyond Convexity and Lipschitz Gradient Continuity with Applications to Quadratic Inverse Problems
原文作者:Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd
代码分享者:李朋

1 问题描述

考虑下面的二次规划反问题
min ⁡ { Ψ ( x ) : = g ( x ) + θ f ( x ) : x ∈ R d } \min\Big\{ \Psi(x):=g(x) + \theta f(x): x\in \mathbb{R}^{d}\Big\} min{Ψ(x):=g(x)+θf(x):xRd}

其中 g ( x ) = 1 4 ∑ i = 1 m ( x T A i x − b i ) 2 , f ( x ) = ∥ x ∥ 1 g(x) = \frac{1}{4}\sum_{i=1}^{m}(x^{T}A_{i}x - b_{i})^2, f(x) = \|x\|_{1} g(x)=41i=1m(xTAixbi)2,f(x)=x1,而且 A i A_{i} Ai是对称矩阵。

2 求解方法

在给出求解方法之前,我们首先定义
p λ ( x ) = λ ∇ g ( x ) − ∇ h ( x ) p_{\lambda}(x)=\lambda \nabla g(x)-\nabla h(x) pλ(x)=λg(x)h(x)
和软阈值算子
S τ ( y ) = max ⁡ { ∣ y ∣ − τ , 0 } sgn ( y ) = max ⁡ ( y − τ , 0 ) − max ⁡ ( − y − τ , 0 ) ( 5.1 ) S_{\tau}(y)=\max\{|y|-\tau, 0\}\text{sgn}(y)=\max(y-\tau,0) - \max(-y-\tau,0) \qquad (5.1) Sτ(y)=max{yτ,0}sgn(y)=max(yτ,0)max(yτ,0)(5.1)
为保证函数 g ( x ) , f ( x ) g(x),f(x) g(x),f(x)L-smad,我们令
h ( x ) = 1 4 ∥ x ∥ 2 4 + 1 2 ∥ x ∥ 2 2 , h(x) = \frac{1}{4} \| x \|_2^4 + \frac{1}{2} \| x \|_2^2, h(x)=41x24+21x22,
具体见原文引理5.1。

本文的求解方法主要根据原文的命题5.1,如下所示

命题5.1 ( l 1 l_{1} l1范数正则化的Bregman近似公式) 令 f = ∥ ⋅ ∥ 1 f=\|\cdot\|_{1} f=1且对 x ∈ R d x\in \mathbb{R}^{d} xRd,令 v ( x ) : = S λ θ ( p λ ( x ) ) v(x):=S_{\lambda \theta}(p_{\lambda}(x)) v(x):=Sλθ(pλ(x))。那么,可得 x + = T λ ( x ) x^{+}=T_{\lambda}(x) x+=Tλ(x)
x + = − t ∗ v ( x ) = t ∗ S λ θ ( ∇ h ( x ) − λ ∇ g ( x ) ) ( 5.2 ) x^{+}=-t^{*}v(x)=t^{*}S_{\lambda\theta}(\nabla h(x)-\lambda\nabla g(x)) \qquad (5.2) x+=tv(x)=tSλθ(h(x)λg(x))(5.2)

是显示公式,其中 t ∗ t^{*} t是下面方程的唯一正实根,
t 3 ∥ v ( x ) ∥ 2 2 + t − 1 = 0. ( 5.3 ) t^{3}\|v(x)\|_{2}^{2}+t-1=0. \qquad (5.3) t3v(x)22+t1=0.(5.3)

3 代码实现

在本次仿真中,我们采用Julia语言编写一个求解二次规划反问题的算法 (5-2)。

(1) 用using 添加一些要用到的库。

using Roots
using LinearAlgebra
using SparseArrays
using Distributions
using Random
using Printf
using Plots
using Polynomials

(2) 根据公式 (5-1) 定义软阈值函数

function compute_softThreshold(y,τ)p = max.(y.-τ,0) - max.(-y.-τ,0);return p;
end

(3)根据公式(5-3) 计算 t ∗ t^{*} t

function find_positiveRoot(S)t = variable();v = sum(S.^2);f = t^3*v + t -1;t_opt = find_zero(f,(0,1));return t_opt;
end

(4) 计算 g ( x ) = 1 4 ∑ i = 1 m ( x T A i x − b i ) 2 g(x) = \frac{1}{4}\sum_{i=1}^{m}(x^{T}A_{i}x - b_{i})^2 g(x)=41i=1m(xTAixbi)2的导数

function derivative_g(A,b,x,m,n)# compute the derivative of g(x)der = zeros(n,1);for k in range(1,m)der = der + (transpose(x)*A[k]*x.-b[k]).*(A[k]*x);endreturn der;
end

(5) 计算 h ( x ) = 1 4 ∥ x ∥ 2 4 + 1 2 ∥ x ∥ 2 2 h(x)=\frac{1}{4}\|x\|_{2}^{4}+\frac{1}{2}\|x\|_{2}^{2} h(x)=41x24+21x22的导数

function derivative_h(x)# compute the derivative of h(x)der = (sum(x.^2) + 1).*x;return der;
end

(6) 全局参数

# Global Parameters
MAXITE = 500;
m =3;
n = 2;

(7) 生成问题数据

θ = 0.5;Random.seed!(123);A = Array{Matrix}(undef,m);
b = Array{Float64}(undef,m); d = Normal(2,2);
for k in range(1,m)A[k] = rand(d,n,n)A[k] = (transpose(A[k])+A[k])./2
endfor k in range(1,m)b[k] = rand(d,1)[1];
end

(8) 根据引理5.1的结果可知 L ≥ ∑ i = 1 m 3 ∥ A i ∥ 2 + ∥ A i ∥ ∣ b i ∣ L\geq \sum_{i=1}^{m}3\|A_{i}\|^{2}+\|A_{i}\||b_{i}| Li=1m3∥Ai2+Ai∥∣bi。另外,根据定理 4.1 成立的条件 0 < λ L < 1 0<\lambda L<1 0<λL<1,可得 0 < λ < 1 L 0<\lambda<\frac{1}{L} 0<λ<L1

L = sum([3*norm(A[k]).^2 + norm(A[k])*norm(b[k]) for k =1:m])+1;
λ = 1/L;   #λ≤1/L

(9) 主程序

x = ones(n,1)
objval_vec = zeros(1,MAXITE);  #存储计算过程中目标函数值
x_vec = zeros(n,MAXITE);       #存储计算过程中变量值for k in range(1,MAXITE)#计算、存储当前目标函数值objval = sum([1/4*(transpose(x)*A[k]*x.-b[k])^2 for k=1:m]) .+ θ.*norm(x,1); objval_vec[1,k] = objval[1,1];  #存储当前变量值x_vec[:,k] = x; #计算函数g(x)、h(x)当前时刻的导数值xold = x;der_h = derivative_h(xold);der_g = derivative_g(A,b,xold,m,n);y = λ*der_g - der_h;τ = λ * θ;v = compute_softThreshold(y,τ);   #计算公式(5-2)中的软阈值算子部分   topt = find_positiveRoot(v);  #计算公式(5-2)中的 t*x = -topt.*v; # 根据公式(5-2) 求出下一时刻 x 的值
end
print("最优解:",x,"\n");
print("最小目标值:",objval_vec[end]);

(10) 画出目标函数值随计算步数的变化

K = range(1, MAXITE);
plot(K, [objval_vec[k] for k=1:MAXITE], yaxis=:log10,label="object value")

(11) 画出变量值随计算步数的变化

plot(x_vec[1,1:MAXITE], x_vec[2,1:MAXITE], arrow = :arrow)
scatter!([x_vec[1,1]], [x_vec[2,1]], markshape=:rect, marksize = 5, markercolor= :red, legend = false)
xlabel!("x1")
ylabel!("x2")

这篇关于优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349788

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.