AI数字人:基于VITS-fast-fine-tuning构建多speaker语音训练

2023-11-04 08:59

本文主要是介绍AI数字人:基于VITS-fast-fine-tuning构建多speaker语音训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 VITS模型介绍

        VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)是一种语音合成方法,它使用预先训练好的语音编码器 (vocoder声码器) 将文本转化为语音。

        VITS 的工作流程如下:

        (1)将文本输入 VITS 系统,系统会将文本转化为发音规则。

        (2)将发音规则输入预先训练好的语音编码器 (vocoder),vocoder 会根据发音规则生成语音信号的特征表示。

        (3)将语音信号的特征表示输入预先训练好的语音合成模型,语音合成模型会根据特征表示生成合成语音。

        VITS 的优点是生成的语音质量较高,能够生成流畅的语音。但是,VITS 的缺点是需要大量的训练语料来训练 vocoder 和语音合成模型,同时需要较复杂的训练流程。

        论文链接:论文地址

2 VITS-fast-fine-tuning介绍

        VITS-fast-fine-tuning是在原始VITS(VITS源码)基础上开发出的一站式多speaker训练的傻瓜式版本,简单易用,可以基于VITS-fast-fine-tuning半小时内无需标注训练任意角色的语音,并提供了基础的预训练模型,可以在预训练模型上进行二次训练,实现任意角色的语音生成。

        代码地址如下:VITS-fast-fine-tuning源码

        训练步骤如下:

        (1)准备预训练数据,按照制定格式和路径进行存放,数据无需标注

        (2)对数据进行预处理,采用whisper模型进行语音提取和切分,形成标注数据。

                whisper的内容详见:whisper

        (3)使用提出的带标注的数据进行语音合成训练

3 VITS-fast-fine-tuning部署与训练

    (1)conda环境准备

        conda环境准备详见:annoconda

    (2)运行环境安装

conda create -n vits python=3.9
conda activate vitspip install imageio==2.4.1
pip install --upgrade youtube-dl
pip install moviepycd VITS-fast-fine-tuning
pip install -r requirements.txt

     (3)训练准备

mkdir monotonic_align
python setup.py build_ext --inplace
cd ..
mkdir pretrained_models
mkdir video_data
mkdir raw_audio
mkdir denoised_audio
mkdir custom_character_voice
mkdir segmented_character_voice

(4)数据准备

数据下载地址:数据集合包

下载完成后:

  • 将“sampled_audio4ft”和“sampled_audio4ft.txt”放入VITS-fast-fine-tuning的根目录下
  • 将“D_0.pth”和“G_0.pth”放入pretrained_models目录下
  • 将“finetune_speaker.json”放入config目录下
  • 将“baker”放入custom_character_voice目录下

注意,如果使用其他文件,命名规则如下:

视频:./video_data/
长音频:./raw_audio/
短音频:./custom_character_voice/
1.其中短音频的格式是:├───aaa├   ├───xxx.wav├   ├───...├   └───zzz.wav├───bbb├   ├───xxx.wav├   ├───...├   └───zzz.wav├───...├└───Character_name_n├───xxx.wav├───...└───zzz.wav
质量要求:2秒以上,10秒以内,尽量不要有背景噪音。
数量要求:一个角色至少10条,最好每个角色20条以上。
2.以角色名命名的长音频文件,音频内只能有单说话人,背景音会被自动去除。
命名格式为:{角色名}_{数字}.wav
同一个角色可以放多个音频,数字不同
(例如:aaa_001.wav, bbb_001.wav),必须是.wav文件。
3.以角色名命名的长视频文件,视频内只能有单说话人,背景音会被自动去除。
命名格式为:{角色名称}_{数字}.mp4
(例如:aaa_332452.mp4, bbb_957315.mp4),必须是.mp4文件。

(5)启动数据的预处理

python video2audio.pypython denoise_audio.pypython long_audio_transcribe.py --languages "CJE" --whisper_size mediumpython short_audio_transcribe.py --languages "CJE" --whisper_size mediumpython preprocess_v2.py

参数--add_auxiliary_data选择:

如果总样本少于100条时增加,即最后一行改为如下命令执行:

python preprocess_v2.py --add_auxiliary_data True

(6)启动模型训练

 为保证模型可以二次训练,修改 finetune_speaker_v2.py文件中的代码

utils.save_checkpoint(net_g, None, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
utils.save_checkpoint(net_g, None, hps.train.learning_rate, epoch,os.path.join(hps.model_dir, "G_latest.pth".format(global_step)))

在保存推理模型的同时,保存判别模型。

启动训练命令如下:

python finetune_speaker_v2.py -m "./OUTPUT_MODEL" --max_epochs "300"

其中参数300为训练300个epochs,可以根据实际情况调整,一般建议200以上

(7)模型推理

将VC_inference.py文件中的

    parser.add_argument("--model_dir", default="./OUTPUT_MODEL/G_latest.pth", help="directory to your fine-tuned model")

改为(如训练300个epochs):

    parser.add_argument("--model_dir", default="./OUTPUT_MODEL/G_300.pth", help="directory to your fine-tuned model")

运行启动命令:

python VC_inference.py

启动的语音生成界面如下:

 输入文字点击generate即可体验语音生成效果

这篇关于AI数字人:基于VITS-fast-fine-tuning构建多speaker语音训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/344684

相关文章

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2