单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation)

本文主要是介绍单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。
在这里插入图片描述

一、蜣螂优化算法

1.1蜣螂滚球

(1)当蜣螂前行无障碍时,蜣螂在滚粪球过程中会利用太阳进行导航,下图中红色箭头表示滚动方向
在这里插入图片描述
本文假设光源的强度会影响蜣螂的位置,蜣螂在滚粪球过程中位置更新如下:

x i ( t + 1 ) = x i ( t ) + α × k × x i ( t − 1 ) + b × Δ x , Δ x = ∣ x i ( t ) − X w ∣ \begin{aligned} x_{i}(t+1) &=x_{i}(t)+\alpha \times k \times x_{i}(t-1)+b \times \Delta x, \\ \Delta x &=\left|x_{i}(t)-X^{w}\right| \end{aligned} xi(t+1)Δx=xi(t)+α×k×xi(t1)+b×Δx,=xi(t)Xw
其中, t t t表示当前迭代次数, x i ( t ) x_{i}(t) xi(t)表示第 i i i次蜣螂在第t次迭代中的位置信息, k ∈ ( 0 , 0.2 ] k∈(0,0.2] k(0,0.2]为扰动系数, b b b ( 0 , 1 ) (0,1) (0,1) 之间的随机数, α \alpha α取 -1 或 1 , X w X^{w} Xw表示全局最差位置, Δ x \Delta x Δx用于模拟光的强度变化。
其中, α \alpha α的取值采用算法1:
在这里插入图片描述

(2)当蜣螂遇到障碍物无法前进时,它需要通过跳舞来重新调整自己,以获得新的路线。本文使用切线函数来模仿跳舞行为,以此获得新的滚动方向,滚动方向仅考虑为 [ 0 , π ] [0,π] [0,π]之间。
在这里插入图片描述
蜣螂一旦成功确定新的方向,它应该继续向后滚动球。蜣螂的位置更新如下:
x i ( t + 1 ) = x i ( t ) + tan ⁡ ( θ ) ∣ x i ( t ) − x i ( t − 1 ) ∣ x_{i}(t+1)=x_{i}(t)+\tan (\theta)\left|x_{i}(t)-x_{i}(t-1)\right| xi(t+1)=xi(t)+tan(θ)xi(t)xi(t1)
其中, θ \theta θ为偏转角,其取值为 [ 0 , π ] [0,π] [0,π],采用算法2:
在这里插入图片描述

1.2蜣螂繁殖

在这里插入图片描述

在自然界中,雌性蜣螂将粪球被滚到适合产卵的安全地方并将其隐藏起来,以此为后代提供一个安全的环境。受此启发,因而提出了一种边界选择策略以此模拟雌性蜣螂产卵的区域:
L b ∗ = max ⁡ ( X ∗ × ( 1 − R ) , L b ) U b ∗ = min ⁡ ( X ∗ × ( 1 + R ) , U b ) \begin{array}{l} L b^{*}=\max \left(X^{*} \times(1-R), L b\right) \\ U b^{*}=\min \left(X^{*} \times(1+R), U b\right) \end{array} Lb=max(X×(1R),Lb)Ub=min(X×(1+R),Ub)
其中, X ∗ X^{*} X表示当前最优位置, L b ∗ L b^{*} Lb U b ∗ U b^{*} Ub分别表示产卵区的下限和上限, R = 1 − t / T m a x R=1−t/T_{max} R=1t/Tmax T m a x T_{max} Tmax表示最大迭代次数, L b Lb Lb U b Ub Ub分别表示优化问题的下限和上限。
雌性蜣螂一旦确定了产卵区,就会选择在该区域育雏球产卵。每只雌性蜣螂在每次迭代中只产生一个卵,可以看出,产卵区的边界范围是动态变化的,主要由R值决定。因此,育雏球的位置在迭代过程中也是动态的,其定义如下:
B i ( t + 1 ) = X ∗ + b 1 × ( B i ( t ) − L b ∗ ) + b 2 × ( B i ( t ) − U b ∗ ) B_{i}(t+1)=X^{*}+b_{1} \times\left(B_{i}(t)-L b^{*}\right)+b_{2} \times\left(B_{i}(t)-U b^{*}\right) Bi(t+1)=X+b1×(Bi(t)Lb)+b2×(Bi(t)Ub)
其中, B i ( t ) B_{i}(t) Bi(t)表示第t次迭代中第 i个育雏球的位置信息, b 1 b_{1} b1 b 2 b_{2} b2均为1×D的随机向量,D表示优化问题的维度。
产卵区的选择如算法3所示:
在这里插入图片描述

1.3蜣螂觅食

在这里插入图片描述
雌性蜣螂所产的卵会逐渐长大,一些已经成熟的小蜣螂会从地下出来寻找食物,小蜣螂的最佳觅食区建模如下:
L b b = max ⁡ ( X b × ( 1 − R ) , L b ) U b b = min ⁡ ( X b × ( 1 + R ) , U b ) \begin{array}{l} L b^{b}=\max \left(X^{b} \times(1-R), L b\right) \\ U b^{b}=\min \left(X^{b} \times(1+R), U b\right) \end{array} Lbb=max(Xb×(1R),Lb)Ubb=min(Xb×(1+R),Ub)
其中, X b X^{b} Xb表示全局最优位置, L b b L b^{b} Lbb U b b U b^{b} Ubb分别表示最佳觅食区的下限和上限。
在这里插入图片描述

小蜣螂的位置更新如下:
x i ( t + 1 ) = x i ( t ) + C 1 × ( x i ( t ) − L b b ) + C 2 × ( x i ( t ) − U b b ) x_{i}(t+1)=x_{i}(t)+C_{1} \times\left(x_{i}(t)-L b^{b}\right)+C_{2} \times\left(x_{i}(t)-U b^{b}\right) xi(t+1)=xi(t)+C1×(xi(t)Lbb)+C2×(xi(t)Ubb)
其中, x i ( t ) x_{i}(t) xi(t)表示第t次迭代中第i只小蜣螂在的位置, C 1 C_{1} C1是服从正态分布的随机数, C 2 C_{2} C2为(0,1)的随机向量。

1.4蜣螂偷窃

在这里插入图片描述

另一方面,一些蜣螂从其他蜣螂那里偷粪球,盗贼蜣螂的位置更新如下:

x i ( t + 1 ) = X b + S × g × ( ∣ x i ( t ) − X ∗ ∣ + ∣ x i ( t ) − X b ∣ ) x_{i}(t+1)=X^{b}+S \times g \times\left(\left|x_{i}(t)-X^{*}\right|+\left|x_{i}(t)-X^{b}\right|\right) xi(t+1)=Xb+S×g×(xi(t)X+xi(t)Xb)
其中, x i ( t ) x_{i}(t) xi(t)表示在第t次迭代中第i个盗贼蜣螂的位置,g为服从正态分布的1×D随机向量,S为常数。

1.5算法描述

滚球蜣螂、繁殖蜣螂、觅食蜣螂和偷窃蜣螂的比例分布如下:
在这里插入图片描述
DBO算法描述如下:
在这里插入图片描述
参考文献:Xue, J., Shen, B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J Supercomput (2022). https://doi.org/10.1007/s11227-022-04959-6

二、CEC2017简介

CEC2017((2017 IEEE Conference on Evolutionary Computation))共有30个无约束测试函数分别是:单峰函数(F1-F3)、简单多峰函数(F4-F10)、混合函数(F11-F20)和组合函数(F21~F30)。测试维度包含:10D、30D、50D、100D。CEC2017无约束测试问题随着维度的增加求解极其困难。

在这里插入图片描述

三、求解结果

将蜣螂优化算法DBO运用于求解CEC2017中30个无约束函数,其中每个测试函数可以选择的维度分别有:10D、30D、50D、100D。增大迭代次数,SSA的求解效果更佳。本例测试函数维度均为为10D(可根据自己需求调整),最大迭代次数为100次。

close all
clear 
clc代码链接:https://pan.baidu.com/s/11I6eMyMU3k-UHfUu1O_mIA 
提取码:1234Function_name=1; %测试函数1-30
lb=-100;%变量下界
ub=100;%变量上界
dim=10;%维度 10/30/50/100
SearchAgents_no=100; % Number of search agents
Max_iteration=100;%最大迭代次数
ObjectiveFunction=str2func('cec17_func');
[Best_score,Best_pos,Curve]=DBO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
figure
% Best convergence curve
semilogy(Curve,'Color','r')
title(strcat('CEC2017-F',num2str(Function_name)))
xlabel('迭代次数');
ylabel('适应度值');
axis tight
box on
legend('DBO')
display(['The best solution is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton is : ', num2str(Best_score)]);

3.1 F1:

在这里插入图片描述

3.2 F2:

在这里插入图片描述

3.3 F3:

在这里插入图片描述

3.4 F4:

在这里插入图片描述

3.5F5:

在这里插入图片描述

3.6F6:

在这里插入图片描述

3.7F7:

在这里插入图片描述

3.8F8:

在这里插入图片描述

四、参考代码

源文件夹包含DBO求解CEC2017的所有代码,测试函数共30个。每个函数可选择维度分别为:10、30、50与100。直接点击Main.m文件直接运行,支持二次开发。
在这里插入图片描述

这篇关于单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342001

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份