单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation)

本文主要是介绍单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。
在这里插入图片描述

一、蜣螂优化算法

1.1蜣螂滚球

(1)当蜣螂前行无障碍时,蜣螂在滚粪球过程中会利用太阳进行导航,下图中红色箭头表示滚动方向
在这里插入图片描述
本文假设光源的强度会影响蜣螂的位置,蜣螂在滚粪球过程中位置更新如下:

x i ( t + 1 ) = x i ( t ) + α × k × x i ( t − 1 ) + b × Δ x , Δ x = ∣ x i ( t ) − X w ∣ \begin{aligned} x_{i}(t+1) &=x_{i}(t)+\alpha \times k \times x_{i}(t-1)+b \times \Delta x, \\ \Delta x &=\left|x_{i}(t)-X^{w}\right| \end{aligned} xi(t+1)Δx=xi(t)+α×k×xi(t1)+b×Δx,=xi(t)Xw
其中, t t t表示当前迭代次数, x i ( t ) x_{i}(t) xi(t)表示第 i i i次蜣螂在第t次迭代中的位置信息, k ∈ ( 0 , 0.2 ] k∈(0,0.2] k(0,0.2]为扰动系数, b b b ( 0 , 1 ) (0,1) (0,1) 之间的随机数, α \alpha α取 -1 或 1 , X w X^{w} Xw表示全局最差位置, Δ x \Delta x Δx用于模拟光的强度变化。
其中, α \alpha α的取值采用算法1:
在这里插入图片描述

(2)当蜣螂遇到障碍物无法前进时,它需要通过跳舞来重新调整自己,以获得新的路线。本文使用切线函数来模仿跳舞行为,以此获得新的滚动方向,滚动方向仅考虑为 [ 0 , π ] [0,π] [0,π]之间。
在这里插入图片描述
蜣螂一旦成功确定新的方向,它应该继续向后滚动球。蜣螂的位置更新如下:
x i ( t + 1 ) = x i ( t ) + tan ⁡ ( θ ) ∣ x i ( t ) − x i ( t − 1 ) ∣ x_{i}(t+1)=x_{i}(t)+\tan (\theta)\left|x_{i}(t)-x_{i}(t-1)\right| xi(t+1)=xi(t)+tan(θ)xi(t)xi(t1)
其中, θ \theta θ为偏转角,其取值为 [ 0 , π ] [0,π] [0,π],采用算法2:
在这里插入图片描述

1.2蜣螂繁殖

在这里插入图片描述

在自然界中,雌性蜣螂将粪球被滚到适合产卵的安全地方并将其隐藏起来,以此为后代提供一个安全的环境。受此启发,因而提出了一种边界选择策略以此模拟雌性蜣螂产卵的区域:
L b ∗ = max ⁡ ( X ∗ × ( 1 − R ) , L b ) U b ∗ = min ⁡ ( X ∗ × ( 1 + R ) , U b ) \begin{array}{l} L b^{*}=\max \left(X^{*} \times(1-R), L b\right) \\ U b^{*}=\min \left(X^{*} \times(1+R), U b\right) \end{array} Lb=max(X×(1R),Lb)Ub=min(X×(1+R),Ub)
其中, X ∗ X^{*} X表示当前最优位置, L b ∗ L b^{*} Lb U b ∗ U b^{*} Ub分别表示产卵区的下限和上限, R = 1 − t / T m a x R=1−t/T_{max} R=1t/Tmax T m a x T_{max} Tmax表示最大迭代次数, L b Lb Lb U b Ub Ub分别表示优化问题的下限和上限。
雌性蜣螂一旦确定了产卵区,就会选择在该区域育雏球产卵。每只雌性蜣螂在每次迭代中只产生一个卵,可以看出,产卵区的边界范围是动态变化的,主要由R值决定。因此,育雏球的位置在迭代过程中也是动态的,其定义如下:
B i ( t + 1 ) = X ∗ + b 1 × ( B i ( t ) − L b ∗ ) + b 2 × ( B i ( t ) − U b ∗ ) B_{i}(t+1)=X^{*}+b_{1} \times\left(B_{i}(t)-L b^{*}\right)+b_{2} \times\left(B_{i}(t)-U b^{*}\right) Bi(t+1)=X+b1×(Bi(t)Lb)+b2×(Bi(t)Ub)
其中, B i ( t ) B_{i}(t) Bi(t)表示第t次迭代中第 i个育雏球的位置信息, b 1 b_{1} b1 b 2 b_{2} b2均为1×D的随机向量,D表示优化问题的维度。
产卵区的选择如算法3所示:
在这里插入图片描述

1.3蜣螂觅食

在这里插入图片描述
雌性蜣螂所产的卵会逐渐长大,一些已经成熟的小蜣螂会从地下出来寻找食物,小蜣螂的最佳觅食区建模如下:
L b b = max ⁡ ( X b × ( 1 − R ) , L b ) U b b = min ⁡ ( X b × ( 1 + R ) , U b ) \begin{array}{l} L b^{b}=\max \left(X^{b} \times(1-R), L b\right) \\ U b^{b}=\min \left(X^{b} \times(1+R), U b\right) \end{array} Lbb=max(Xb×(1R),Lb)Ubb=min(Xb×(1+R),Ub)
其中, X b X^{b} Xb表示全局最优位置, L b b L b^{b} Lbb U b b U b^{b} Ubb分别表示最佳觅食区的下限和上限。
在这里插入图片描述

小蜣螂的位置更新如下:
x i ( t + 1 ) = x i ( t ) + C 1 × ( x i ( t ) − L b b ) + C 2 × ( x i ( t ) − U b b ) x_{i}(t+1)=x_{i}(t)+C_{1} \times\left(x_{i}(t)-L b^{b}\right)+C_{2} \times\left(x_{i}(t)-U b^{b}\right) xi(t+1)=xi(t)+C1×(xi(t)Lbb)+C2×(xi(t)Ubb)
其中, x i ( t ) x_{i}(t) xi(t)表示第t次迭代中第i只小蜣螂在的位置, C 1 C_{1} C1是服从正态分布的随机数, C 2 C_{2} C2为(0,1)的随机向量。

1.4蜣螂偷窃

在这里插入图片描述

另一方面,一些蜣螂从其他蜣螂那里偷粪球,盗贼蜣螂的位置更新如下:

x i ( t + 1 ) = X b + S × g × ( ∣ x i ( t ) − X ∗ ∣ + ∣ x i ( t ) − X b ∣ ) x_{i}(t+1)=X^{b}+S \times g \times\left(\left|x_{i}(t)-X^{*}\right|+\left|x_{i}(t)-X^{b}\right|\right) xi(t+1)=Xb+S×g×(xi(t)X+xi(t)Xb)
其中, x i ( t ) x_{i}(t) xi(t)表示在第t次迭代中第i个盗贼蜣螂的位置,g为服从正态分布的1×D随机向量,S为常数。

1.5算法描述

滚球蜣螂、繁殖蜣螂、觅食蜣螂和偷窃蜣螂的比例分布如下:
在这里插入图片描述
DBO算法描述如下:
在这里插入图片描述
参考文献:Xue, J., Shen, B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J Supercomput (2022). https://doi.org/10.1007/s11227-022-04959-6

二、CEC2017简介

CEC2017((2017 IEEE Conference on Evolutionary Computation))共有30个无约束测试函数分别是:单峰函数(F1-F3)、简单多峰函数(F4-F10)、混合函数(F11-F20)和组合函数(F21~F30)。测试维度包含:10D、30D、50D、100D。CEC2017无约束测试问题随着维度的增加求解极其困难。

在这里插入图片描述

三、求解结果

将蜣螂优化算法DBO运用于求解CEC2017中30个无约束函数,其中每个测试函数可以选择的维度分别有:10D、30D、50D、100D。增大迭代次数,SSA的求解效果更佳。本例测试函数维度均为为10D(可根据自己需求调整),最大迭代次数为100次。

close all
clear 
clc代码链接:https://pan.baidu.com/s/11I6eMyMU3k-UHfUu1O_mIA 
提取码:1234Function_name=1; %测试函数1-30
lb=-100;%变量下界
ub=100;%变量上界
dim=10;%维度 10/30/50/100
SearchAgents_no=100; % Number of search agents
Max_iteration=100;%最大迭代次数
ObjectiveFunction=str2func('cec17_func');
[Best_score,Best_pos,Curve]=DBO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
figure
% Best convergence curve
semilogy(Curve,'Color','r')
title(strcat('CEC2017-F',num2str(Function_name)))
xlabel('迭代次数');
ylabel('适应度值');
axis tight
box on
legend('DBO')
display(['The best solution is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton is : ', num2str(Best_score)]);

3.1 F1:

在这里插入图片描述

3.2 F2:

在这里插入图片描述

3.3 F3:

在这里插入图片描述

3.4 F4:

在这里插入图片描述

3.5F5:

在这里插入图片描述

3.6F6:

在这里插入图片描述

3.7F7:

在这里插入图片描述

3.8F8:

在这里插入图片描述

四、参考代码

源文件夹包含DBO求解CEC2017的所有代码,测试函数共30个。每个函数可选择维度分别为:10、30、50与100。直接点击Main.m文件直接运行,支持二次开发。
在这里插入图片描述

这篇关于单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342001

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义