cec2017专题

CEC2017(Python):五种算法(HHO、RFO、OOA、PSO、GWO)求解CEC2017

一、5种算法简介 1、哈里斯鹰优化算法HHO 2、红狐优化算法RFO 3、鱼鹰优化算法OOA 4、粒子群优化算法PSO 5、灰狼优化算法GWO 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definitio

改进鲸鱼优化算法(E-WOA)和WOA跑CEC2017

改进鲸鱼优化算法(E-WOA)和WOA跑CEC2017 改进点包括: 1、池化机制 2、迁移搜索 3、优先选择的增强寻优机制 改进策略提升现有鲸鱼优化(WOA)算法的性能。并在CEC2017测试集验证。 可对比和二次开发,这些策略可推广到其它算法,该论文为中科院sci二区top论文,具有很大的参考价值。可代码复现、定制。 部分实验结果如下:

CEC2017(Python):七种算法(RFO、DBO、HHO、SSA、DE、GWO、OOA)求解CEC2017

一、7种算法简介 1、红狐优化算法RFO 2、蜣螂优化算法DBO 3、哈里斯鹰优化算法HHO 4、麻雀搜索算法SSA 5、差分进化算法DE 6、灰狼优化算法GWO 7、鱼鹰优化算法OOA 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N.

CEC2017(Python):五种算法(DBO、HHO、RFO、SSA、PSO)求解CEC2017

一、5种算法简介 1、蜣螂优化算法DBO 2、哈里斯鹰优化算法HHO 3、红狐优化算法RFO 4、麻雀搜索算法SSA 5、粒子群优化算法PSO 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definitio

CEC2017(Python):蜣螂优化算法DBO求解CEC2017

一、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definitions and evaluation criteria for the CEC2017 special session and competition on

CEC2017(Python):麻雀搜索算法SSA求解CEC2017(提供Python代码)

一、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definitions and evaluation criteria for the CEC2017 special session and competition on si

CEC2017(Python):五种算法(PSO、RFO、SSA、DE、HHO)求解CEC2017

一、5种算法简介 1、粒子群优化算法PSO 2、红狐优化算法RFO 3、麻雀搜索算法SSA 4、差分进化算法DE 5、哈里斯鹰优化算法HHO 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definition

CEC2017(Python):五种算法(DE、RFO、OOA、PSO、GWO)求解CEC2017

一、5种算法简介 1、差分进化算法DE 2、红狐优化算法RFO 3、鱼鹰优化算法OOA 4、粒子群优化算法PSO 5、灰狼优化算法GWO 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definitions

CEC2017(Python):五种算法(SSA、RFO、OOA、PSO、GWO)求解CEC2017

一、5种算法简介 1、麻雀搜索算法SSA 2、红狐优化算法RFO 3、鱼鹰优化算法OOA 4、粒子群优化算法PSO 5、灰狼优化算法GWO 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definitions

单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation)

蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。 一、蜣螂优化算法 1.1蜣螂滚球 (1)当蜣螂前行无障碍时,蜣螂在滚粪球过程中会利用太阳进行导航,下图中红色箭头表示滚动方向 本文假设光源的强度会影响蜣螂的位置,蜣螂在滚粪球过程中位置更新如下: x

智能优化算法常用指标一键导出为EXCEL,CEC2017函数集最优值,平均值,标准差,最差值,中位数,秩和检验,箱线图...

声明:对于作者的原创代码,禁止转售倒卖,违者必究! 之前出了一篇关于CEC2005函数集的智能算法指标一键统计,然而后台有很多小伙伴在询问其他函数集该怎么调用。今天采用CEC2017函数集为例,进行展示。 为了突出改进智能优化算法的效果,常常会将改进的智能算法与其他算法进行对比。 在一些期刊论文中,经常会看到一个超级大的表格,统计着每个算法的平均值,标准差,最优值,最差值,中位数等指标,例如: