数据挖掘题目:设ε= 2倍的格网间距,MinPts = 6, 采用基于1-范数距离的DBSCAN算法对下图中的实心格网点进行聚类,并给出聚类结果(代码解答)

本文主要是介绍数据挖掘题目:设ε= 2倍的格网间距,MinPts = 6, 采用基于1-范数距离的DBSCAN算法对下图中的实心格网点进行聚类,并给出聚类结果(代码解答),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题

在这里插入图片描述

代码

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import DBSCAN
#pip install matplotlib
#pip install numpy
#pip install scikit-learn
# 实心格网点的坐标
solid_points = np.array([[1, 1], [2, 1],[3, 1], [1, 2], [2, 2], [3, 2],[1, 3],[3, 3], [1, 4],[3, 4], [1, 5], [2, 5], [3, 9], [6, 4],[7, 6], [7, 7], [7, 8], [7, 9], [8, 6], [9, 7], [9, 8], [9, 9] ,[10, 6],[11, 6],[11, 7],[11, 8],[11, 9]])# 执行DBSCAN聚类
'''
对于1范数(曼哈顿距离),将metric参数的值设置为'manhattan':
dbscan = DBSCAN(eps=2, min_samples=6, metric='manhattan')
对于2范数(欧几里德距离),将metric参数的值设置为'euclidean':
dbscan = DBSCAN(eps=2, min_samples=6, metric='euclidean')
对于无穷范数,将metric参数的值设置为'chebyshev':
dbscan = DBSCAN(eps=2, min_samples=6, metric='chebyshev')
'''
dbscan = DBSCAN(eps=2, min_samples=6, metric='manhattan')
labels = dbscan.fit_predict(solid_points)# 获取核心点的索引
core_samples_mask = np.zeros_like(labels, dtype=bool)
core_samples_mask[dbscan.core_sample_indices_] = True
core_indices = np.where(core_samples_mask)[0]# 获取边缘点的索引
border_indices = np.setdiff1d(np.where(labels != -1)[0], core_indices)# 获取孤立点的索引
outlier_indices = np.where(labels == -1)[0]# 映射字典
mapping  = {1: 'A',2: 'B',3: 'C',4: 'D',5: 'E',6: 'F',7: 'G',8: 'H',9: 'I',10: 'J',11: 'K'
}# 构建簇与点的映射关系
clusters = {}
for i, label in enumerate(labels):clusters.setdefault(label, {'core': [], 'border': []})if label != -1:if i in core_indices:clusters[label]['core'].append(solid_points[i])else:clusters[label]['border'].append(solid_points[i])# 打印各个簇的核心点和边界点
for label, cluster in clusters.items():core_points = [f"{mapping[point[0]]}{point[1]}" for point in cluster['core']]border_points = [f"{mapping[point[0]]}{point[1]}" for point in cluster['border']]if label!=-1:print(f"簇 {label+1} 的核心点为:" + ", ".join(core_points))print(f"簇 {label+1} 的边界点为:" + ", ".join(border_points))print()# 打印孤立点
outliers = [f"{mapping[point[0]]}{point[1]}" for point in solid_points[outlier_indices]]
print("孤立点为:" + ", ".join(outliers))
print()# 绘制实心格网点和空心格网点的聚类结果
# 先获取当前的坐标轴
ax = plt.gca()
# 将y轴方向进行翻转
ax.invert_yaxis()
# 绘制散点图
plt.scatter(solid_points[:, 0], solid_points[:, 1], c=labels)
plt.xlabel('X')
plt.ylabel('Y')
plt.title('DBSCAN Clustering')
plt.show()

结果

在这里插入图片描述
在这里插入图片描述

这篇关于数据挖掘题目:设ε= 2倍的格网间距,MinPts = 6, 采用基于1-范数距离的DBSCAN算法对下图中的实心格网点进行聚类,并给出聚类结果(代码解答)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341861

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,