【论文笔记】基于深度学习的端到端无监督配准模型——变形图像配准网络(Deformable Image Registration Network, DIRNet)

本文主要是介绍【论文笔记】基于深度学习的端到端无监督配准模型——变形图像配准网络(Deformable Image Registration Network, DIRNet),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是论文 End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network 的阅读笔记。

文章提出了一种端到端的无监督配准模型——变形图像配准网络(Deformable Image Registration Network, DIRNet),并在手写数字数据集 MNIST 和心脏电影 MR 数据集 SCD 上做了实验。这个模型包括三个部分:一个由 CNN 实现的回归器、空间变换网络、重采样器。该模型是第一个基于深度学习的无监督端对端的图像配准模型。

一、网络结构

DIRNet 由回归器、空间变换器和重采样器三部分组成。如上图所示,回归器以 fixed image 和 moving image 的图像块作为输入,其输出的形变参数作为空间变换器的输入,空间变换器产生一个形变场,然后输入到重采样器中,重采样器根据形变场对 moving image 进行变换,得到配准之后的图像。整个网络通过通过计算 fixed image 和 warped moving image 之间的相似性作为损失函数来更新网络的参数。

1. 回归器

回归器的输入是 fixed image 和 moving image 中对应的图像块(patch),它利用 CNN 预测一个局部的形变参数。其网络结构具体是:4 个 3 × 3 3\times3 3×3 的卷积层,采用 0 填充,并且使用 2 × 2 2\times2 2×2 的下采样层,下采样层具体使用的是平均池化操作,然后是一个 1 × 1 1\times1 1×1 的卷积层作为全连接层。每一层中都使用了批正则化,除最后一个卷积层外每个卷积层后都跟着一个指数线性单元(ELU)作为激活函数。

2. 空间变换器

空间变换器的输入是回归器预测的形变参数,其输出是一个位移向量场(形变场),具体的,空间转换器会根据薄板样条产生一个形变场,这种更适合于预测全局的形变场,即输入是整幅图像;当输入是图像块时,预测的是局部的形变场,这时 B 样表转换则更适合。

3. 重采样器

重采样器的输入是一个形变场,其输出是变形后的 moving image。

模型的优化器采用的是随机梯度下降优化器,图像之间的相似度损失采用的是归一化的互相关。

二、实验结果

1. MNIST 数据集

在处理 MNIST 数据集时,由于有 0~9 十种不同的手写数字,所以是对每一类的图像分别进行训练的,并且在训练时随机选择一个图片作为 fixed image。

上图是对 MNIST 数据集进行训练的结果,第一行是每一类图像取平均值之后得到的,第二行是 fixed image,第三行是配准之后的结果。

2. SCD 数据集

为了评估不同的网络设置对效果的影响,在 SCD 数据集上进行训练时,以第二部分网络结构中提到的设置作为基准,分别对以下内容做了实验:

为了评估不同的下采样方法的影响,DIRNet-A1 模型使用的是最大池化操作,DIRNet-A2 模型使用的是步长为 2 的卷积操作。

为了评估不同的空间变换器的影响,DIRNet-B1 使用的是二次 B 样条变换器,DIRNet-B2 使用的是薄板样条变换器。

为了评估不同大小的接收野(即patch大小)的影响,DIRNet-C1 使用的是有重叠的图像块,该图像块大小与B样条控制点的捕获范围一致,这是通过在最终池层前后添加额外的 3 × 3 3\times3 3×3 的卷积层来实现的;DIRNet-C2 通过将最后一层 1 × 1 1\times1 1×1 的卷积层替换为 3 × 3 3\times3 3×3 的卷积层,然后是一个下采样层、两个 1024 节点的完全连接层和一个 16 × 16 16\times16 16×16 的二维控制点的最终输出层来分析每个控制点的全图像切片。

上图是根据上述不同的实验设置得到的训练结果,其中每一行分别表示配准之前的损失、SimpleElastix 模型训练的损失以及不同设置的 DIRNet 的损失。 9 5 t h S D 95^{th} SD 95thSD 是 surface distance(表面距离)的缩写, M A D MAD MAD 是 mean absolute surface distance(平均绝对表面距离的缩写)。在所有的模型中,B2 训练时收敛的较慢,但是效果比基准网络要好,C1 的效果是最好的。

上图是 DIRNet 和 SimpleElastix 配准结果的对比图,可以看出来 DIRNet 的配准结果更接近于 fixed image。

这篇关于【论文笔记】基于深度学习的端到端无监督配准模型——变形图像配准网络(Deformable Image Registration Network, DIRNet)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/323164

相关文章

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步