数理基础之轨道力学的三体问题,了解如何推导轨道力学中研究最多的问题(用于设计 James Webb 太空望远镜轨道)...

本文主要是介绍数理基础之轨道力学的三体问题,了解如何推导轨道力学中研究最多的问题(用于设计 James Webb 太空望远镜轨道)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三体问题

让我们首先了解什么是三体问题。三体问题(或 3BP)是更广泛的n体问题的特例,它涉及预测天体在彼此引力影响下的运动。与更简单的二体问题 (2BP) 不同,三体问题没有封闭形式的解。这意味着必须使用初始条件(位置和速度)和数值方法来估计物体的运动。对于实际应用,3BP 可以专注于围绕两个较大质量(也称为初选)运行的卫星的运动;这些可能是卫星、行星或恒星。

一颗卫星在两个较大的主星影响下的运动通常是混乱的,这意味着该运动很难预测。这就是我们使用现代数值方法尽可能准确地估计/预测此运动的原因。为了估计 3BP 运动,需要创建一个模型,其中涉及使用牛顿运动定律和牛顿万有引力定律。推导可能难以理解。这是一个更简单的推导,可以帮助您更好地理解后续的推导。现在,开始理解任何物理问题的最佳起点是精心绘制的图表。

3BP图

三体问题

上图显示了 3BP 的标准设置。初级表示为m₁和m₂,其中m₁通常是两个质量中较大的一个。卫星(或其运动感兴趣的物体)被标记为m₃。尽管我们将卫星标记为质量 3,但出于实际目的,与主卫星相比,该质量可以忽略不计。由于第三个质量被认为可以忽略不计,因此较大的两个质量的轨道可以被认为是圆锥 (2BP) 轨道。这大大简化了推导。此外,通常研究椭圆和圆形主轨道的特殊情况,称为椭圆限制 3BP (ER3BP) 或圆形限制 3BP (CR3BP)。

考虑到这一点,两个原色的重心或质心可以被认为是一个惯性点,标记为O。该系统中有两个固定在重心的坐标系:一个随原色旋转的旋转坐标系(x-和y -hat)和一个不旋转的惯性坐标系(X-和Y -hat)。在任何给定时间,这两个帧都以角度θ分隔。还有一些位置向量(d₁、d₂、r₁、r₂和ρ) 确定质量相对于惯性重心的位置(对于使用牛顿运动定律很重要)和m₃相对于原色的位置。此推导的相关向量是ρ,因为它将确定卫星的惯性运动。

无量纲化

可怕的词,我知道,但它并不像看起来那么复杂。这不是必要的步骤,但确实可以更轻松地推导 3BP 的运动方程。无量纲化是一种从问题中提取物理维度的方法,对于简化数学表达式很有用。让我们以 3BP 为例。我们可以如下定义质量、长度和时间的无量纲化参数(按照惯例):

image.png

这里,a是两个原色运动的半长轴,G是万有引力常数。这可能还没有意义,所以我将演示如何将地月系统中的一组初始条件(本例中的两个初始条件)无量纲化。该特定系统的无量纲化参数为:

image.png

现在,如果我们有一个状态向量(位置和速度向量的组合),那么我们可以按如下方式对其进行无量纲化:

image.png

请注意,无量纲向量没有单位,我们使用维度参数删除了km和s单位。此过程反向进行,因此如果您想重新添加维度,只需乘以或除以L、M或T*。

推导 ER3BP 运动方程

制定三体问题的最后也是最长的一步是推导可忽略质量m₃ 的运动方程。首先,我们需要做一些假设,其中一些已经提到过。我们假设m₃ << m₁和m₂;这意味着m₁和m₂以不受扰动的二体运动(开普勒运动)运动。此外,m₁和m₂被视为质点(这简化了推导)。我们将从m₁和m₂的情况开始推导在围绕重心 (ER3BP) 的椭圆轨道上移动,然后简化此结果以获得 CR3BP。为了方便起见,我们首先定义质量比:

image.png

下一步是将牛顿第二运动定律和牛顿万有引力定律应用于m₃。

image.png

上面的等式是m₃的维度加速度(刻度代表二阶时间导数)。现在,无量纲化参数可用于通过将加速度乘以 ( T* )² 再除以L*来从系统中移除物理维度(因为加速度的单位是长度与时间的平方)。

image.png

在上面的等式中, ρ向量上方的点代表 ND 二阶时间导数,r₁和r2是 ND 向量。现在我们可以使用运动学来确定m₃的速度和加速度的分量。这对于创建运动方程的标量形式很重要。基本运动学方程或BKE可用于执行此操作:

image.png

将 BKE 应用于ρ以获得一阶时间导数或速度

image.png

使用椭圆轨道的 2BP 几何,您可以导出θ的变化率:

image.png

这里,h是m₁ - m₂系统的比角动量,R是两个主要质量之间的瞬时距离(在 ER3BP 中随时间变化),e是椭圆轨道的偏心率,E是偏心异常. 现在,再次应用 BKE 以获得加速:

image.png

接下来,我们可以结合加速度矢量的两个方程,但首先我们应该从图中定义位置矢量。d₁和d₂是使用二粒子系统质心方程定义的(因为m₃可以忽略不计)。r₁、r₂和ρ可以使用图表和向量减法来定义。

image.png

现在,我们可以在第一个加速度方程中使用r₁和r₂的定义,然后将ρ加速度方程组合如下:

image.png

组合等式 (1) 和 (2) 的类似项(x -hat、y -hat 和z -hat):

image.png

上述方程表示旋转坐标系中m₃的 ER3BP 运动方程。ER3BP 很难与θ项进行数值积分;但是,可以做出假设来简化方程以获得 CR3BP,这是一个更容易集成的问题。在 CR3BP 中,原色围绕质心在圆形轨道上运动。这意味着:

image.png

然后,使用这些新假设简化 ER3BP 方程:

image.png

这些方程表示m₃的 CR3BP 运动方程。可以对它们进行数值积分,以获得旋转坐标系中m₃的位置和速度的时间历程。请注意,对于 CR3BP,原色将在旋转坐标系中保持静止。为了从 CR3BP 中的旋转矢量获得惯性矢量,我们可以使用以下等式:

image.png

此处,x、y和z表示旋转坐标系矢量分量,X、Y和Z表示惯性坐标系矢量分量。


http://www.taodudu.cc/news/show-8110556.html

相关文章:

  • 源码解析之访问osgi felix bundle中的文件和资源
  • 【记录七】org.apache.felix.scr.annotations @Reference
  • CNI 网络流量 4.3 Calico felix
  • mysql 金额显示负数_收支明细表里面的金额,为什么突然全部显示为负数
  • 家庭收支記賬項目登記----面向對象
  • 收支明细,如何添加多个账号进行记账
  • 家庭收支登记表
  • JAVA实现收支记账项目
  • MySQL春节收支表怎么建立_怎么用SQL语句对表【收支表】进行分类汇总?
  • mysql一些明细表怎么处理_mysql 关于用户账目明细设计的问题
  • PHP编程之收入支出明细表实现技术
  • 携程校招内部推荐-----简历直通+Offer优先发放!!!
  • 2024携程校招面试真题汇总及其解答(一)
  • 2024携程校招面试真题汇总及其解答(二)
  • 太强了!仅凭“阿里爸爸”大厂面试参考笔记,去携程Java三面,已OC
  • 抱歉,吾不会回访
  • 请勿要求回访博客
  • 全智通A+——回访评分统计查询超时——V6.19.1009
  • 使用FreeSWITCH做电话自动回访设置
  • Linux录制,回访和共享终端操作
  • 咨询回访的原先界面
  • 计算机毕业设计ssm毕业生回访系统564c4系统+程序+源码+lw+远程部署(2)
  • linux录屏与回访之script
  • ssm毕设项目毕业生回访系统564c4(java+VUE+Mybatis+Maven+Mysql+sprnig)
  • jmeter回访web脚本以及联调--57
  • SEO人员,如何提高用户回访率?
  • Hive统计每日新增及其二日和三十日回访比例
  • 回访机器人大展身手,你见过如此有才的“AI”机器人吗?
  • 电商回访模块设计
  • 题解 | #给出表中排名为奇数行的first_name#
  • 这篇关于数理基础之轨道力学的三体问题,了解如何推导轨道力学中研究最多的问题(用于设计 James Webb 太空望远镜轨道)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/316063

    相关文章

    不懂推荐算法也能设计推荐系统

    本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

    关于数据埋点,你需要了解这些基本知识

    产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

    好题——hdu2522(小数问题:求1/n的第一个循环节)

    好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

    hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

    利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

    零基础学习Redis(10) -- zset类型命令使用

    zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

    购买磨轮平衡机时应该注意什么问题和技巧

    在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

    uva 10014 Simple calculations(数学推导)

    直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

    缓存雪崩问题

    缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

    PTA求一批整数中出现最多的个位数字

    作者 徐镜春 单位 浙江大学 给定一批整数,分析每个整数的每一位数字,求出现次数最多的个位数字。例如给定3个整数1234、2345、3456,其中出现最多次数的数字是3和4,均出现了3次。 输入格式: 输入在第1行中给出正整数N(≤1000),在第二行中给出N个不超过整型范围的非负整数,数字间以空格分隔。 输出格式: 在一行中按格式“M: n1 n2 ...”输出,其中M是最大次数,n

    6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

    上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)