数理基础之轨道力学的三体问题,了解如何推导轨道力学中研究最多的问题(用于设计 James Webb 太空望远镜轨道)...

本文主要是介绍数理基础之轨道力学的三体问题,了解如何推导轨道力学中研究最多的问题(用于设计 James Webb 太空望远镜轨道)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三体问题

让我们首先了解什么是三体问题。三体问题(或 3BP)是更广泛的n体问题的特例,它涉及预测天体在彼此引力影响下的运动。与更简单的二体问题 (2BP) 不同,三体问题没有封闭形式的解。这意味着必须使用初始条件(位置和速度)和数值方法来估计物体的运动。对于实际应用,3BP 可以专注于围绕两个较大质量(也称为初选)运行的卫星的运动;这些可能是卫星、行星或恒星。

一颗卫星在两个较大的主星影响下的运动通常是混乱的,这意味着该运动很难预测。这就是我们使用现代数值方法尽可能准确地估计/预测此运动的原因。为了估计 3BP 运动,需要创建一个模型,其中涉及使用牛顿运动定律和牛顿万有引力定律。推导可能难以理解。这是一个更简单的推导,可以帮助您更好地理解后续的推导。现在,开始理解任何物理问题的最佳起点是精心绘制的图表。

3BP图

三体问题

上图显示了 3BP 的标准设置。初级表示为m₁和m₂,其中m₁通常是两个质量中较大的一个。卫星(或其运动感兴趣的物体)被标记为m₃。尽管我们将卫星标记为质量 3,但出于实际目的,与主卫星相比,该质量可以忽略不计。由于第三个质量被认为可以忽略不计,因此较大的两个质量的轨道可以被认为是圆锥 (2BP) 轨道。这大大简化了推导。此外,通常研究椭圆和圆形主轨道的特殊情况,称为椭圆限制 3BP (ER3BP) 或圆形限制 3BP (CR3BP)。

考虑到这一点,两个原色的重心或质心可以被认为是一个惯性点,标记为O。该系统中有两个固定在重心的坐标系:一个随原色旋转的旋转坐标系(x-和y -hat)和一个不旋转的惯性坐标系(X-和Y -hat)。在任何给定时间,这两个帧都以角度θ分隔。还有一些位置向量(d₁、d₂、r₁、r₂和ρ) 确定质量相对于惯性重心的位置(对于使用牛顿运动定律很重要)和m₃相对于原色的位置。此推导的相关向量是ρ,因为它将确定卫星的惯性运动。

无量纲化

可怕的词,我知道,但它并不像看起来那么复杂。这不是必要的步骤,但确实可以更轻松地推导 3BP 的运动方程。无量纲化是一种从问题中提取物理维度的方法,对于简化数学表达式很有用。让我们以 3BP 为例。我们可以如下定义质量、长度和时间的无量纲化参数(按照惯例):

image.png

这里,a是两个原色运动的半长轴,G是万有引力常数。这可能还没有意义,所以我将演示如何将地月系统中的一组初始条件(本例中的两个初始条件)无量纲化。该特定系统的无量纲化参数为:

image.png

现在,如果我们有一个状态向量(位置和速度向量的组合),那么我们可以按如下方式对其进行无量纲化:

image.png

请注意,无量纲向量没有单位,我们使用维度参数删除了km和s单位。此过程反向进行,因此如果您想重新添加维度,只需乘以或除以L、M或T*。

推导 ER3BP 运动方程

制定三体问题的最后也是最长的一步是推导可忽略质量m₃ 的运动方程。首先,我们需要做一些假设,其中一些已经提到过。我们假设m₃ << m₁和m₂;这意味着m₁和m₂以不受扰动的二体运动(开普勒运动)运动。此外,m₁和m₂被视为质点(这简化了推导)。我们将从m₁和m₂的情况开始推导在围绕重心 (ER3BP) 的椭圆轨道上移动,然后简化此结果以获得 CR3BP。为了方便起见,我们首先定义质量比:

image.png

下一步是将牛顿第二运动定律和牛顿万有引力定律应用于m₃。

image.png

上面的等式是m₃的维度加速度(刻度代表二阶时间导数)。现在,无量纲化参数可用于通过将加速度乘以 ( T* )² 再除以L*来从系统中移除物理维度(因为加速度的单位是长度与时间的平方)。

image.png

在上面的等式中, ρ向量上方的点代表 ND 二阶时间导数,r₁和r2是 ND 向量。现在我们可以使用运动学来确定m₃的速度和加速度的分量。这对于创建运动方程的标量形式很重要。基本运动学方程或BKE可用于执行此操作:

image.png

将 BKE 应用于ρ以获得一阶时间导数或速度

image.png

使用椭圆轨道的 2BP 几何,您可以导出θ的变化率:

image.png

这里,h是m₁ - m₂系统的比角动量,R是两个主要质量之间的瞬时距离(在 ER3BP 中随时间变化),e是椭圆轨道的偏心率,E是偏心异常. 现在,再次应用 BKE 以获得加速:

image.png

接下来,我们可以结合加速度矢量的两个方程,但首先我们应该从图中定义位置矢量。d₁和d₂是使用二粒子系统质心方程定义的(因为m₃可以忽略不计)。r₁、r₂和ρ可以使用图表和向量减法来定义。

image.png

现在,我们可以在第一个加速度方程中使用r₁和r₂的定义,然后将ρ加速度方程组合如下:

image.png

组合等式 (1) 和 (2) 的类似项(x -hat、y -hat 和z -hat):

image.png

上述方程表示旋转坐标系中m₃的 ER3BP 运动方程。ER3BP 很难与θ项进行数值积分;但是,可以做出假设来简化方程以获得 CR3BP,这是一个更容易集成的问题。在 CR3BP 中,原色围绕质心在圆形轨道上运动。这意味着:

image.png

然后,使用这些新假设简化 ER3BP 方程:

image.png

这些方程表示m₃的 CR3BP 运动方程。可以对它们进行数值积分,以获得旋转坐标系中m₃的位置和速度的时间历程。请注意,对于 CR3BP,原色将在旋转坐标系中保持静止。为了从 CR3BP 中的旋转矢量获得惯性矢量,我们可以使用以下等式:

image.png

此处,x、y和z表示旋转坐标系矢量分量,X、Y和Z表示惯性坐标系矢量分量。


http://www.taodudu.cc/news/show-8110556.html

相关文章:

  • 源码解析之访问osgi felix bundle中的文件和资源
  • 【记录七】org.apache.felix.scr.annotations @Reference
  • CNI 网络流量 4.3 Calico felix
  • mysql 金额显示负数_收支明细表里面的金额,为什么突然全部显示为负数
  • 家庭收支記賬項目登記----面向對象
  • 收支明细,如何添加多个账号进行记账
  • 家庭收支登记表
  • JAVA实现收支记账项目
  • MySQL春节收支表怎么建立_怎么用SQL语句对表【收支表】进行分类汇总?
  • mysql一些明细表怎么处理_mysql 关于用户账目明细设计的问题
  • PHP编程之收入支出明细表实现技术
  • 携程校招内部推荐-----简历直通+Offer优先发放!!!
  • 2024携程校招面试真题汇总及其解答(一)
  • 2024携程校招面试真题汇总及其解答(二)
  • 太强了!仅凭“阿里爸爸”大厂面试参考笔记,去携程Java三面,已OC
  • 抱歉,吾不会回访
  • 请勿要求回访博客
  • 全智通A+——回访评分统计查询超时——V6.19.1009
  • 使用FreeSWITCH做电话自动回访设置
  • Linux录制,回访和共享终端操作
  • 咨询回访的原先界面
  • 计算机毕业设计ssm毕业生回访系统564c4系统+程序+源码+lw+远程部署(2)
  • linux录屏与回访之script
  • ssm毕设项目毕业生回访系统564c4(java+VUE+Mybatis+Maven+Mysql+sprnig)
  • jmeter回访web脚本以及联调--57
  • SEO人员,如何提高用户回访率?
  • Hive统计每日新增及其二日和三十日回访比例
  • 回访机器人大展身手,你见过如此有才的“AI”机器人吗?
  • 电商回访模块设计
  • 题解 | #给出表中排名为奇数行的first_name#
  • 这篇关于数理基础之轨道力学的三体问题,了解如何推导轨道力学中研究最多的问题(用于设计 James Webb 太空望远镜轨道)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/316063

    相关文章

    springboot循环依赖问题案例代码及解决办法

    《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

    SpringBoot启动报错的11个高频问题排查与解决终极指南

    《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

    C#基础之委托详解(Delegate)

    《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

    MySQL新增字段后Java实体未更新的潜在问题与解决方案

    《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

    如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

    《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

    如何解决Spring MVC中响应乱码问题

    《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

    pip无法安装osgeo失败的问题解决

    《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

    一文带你了解SpringBoot中启动参数的各种用法

    《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

    解决Java中基于GeoTools的Shapefile读取乱码的问题

    《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

    Spring MVC使用视图解析的问题解读

    《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图