轨迹规划 | 图解分析人工势场算法APF(附ROS C++/Python/Matlab仿真)

本文主要是介绍轨迹规划 | 图解分析人工势场算法APF(附ROS C++/Python/Matlab仿真),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0 专栏介绍
  • 1 传统避障方法缺陷
  • 2 APF基本原理
  • 3 人工势场可视化
  • 4 仿真实现
    • 4.1 ROS C++实现
    • 4.2 Python实现
    • 4.3 Matlab实现

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 传统避障方法缺陷

传统的避障方法通常基于几何或图形算法,缺乏对环境动态性和实时性的适应能力。例如,环境在实时操作中可能会出现移动障碍物、临时障碍物等情况,传统方法需要对全局障碍重新建模,产生巨大的计算开销。

在这里插入图片描述

与之相对,人工势场法(Artificial Potential Field, APF)基于机器人与障碍物之间的相互作用来生成路径,因此不需要进行全局路径搜索,避免了大量的计算开销。这使得人工势场法能够实现快速的响应和实时的避障能力,非常适合需要快速决策和动态调整路径的应用场景。此外,通过合理设计势场函数和调节参数,可以灵活地处理复杂环境中的多障碍物情况,增加了系统的鲁棒性和可扩展性。

接下来详细介绍人工势场算法的基本原理。

2 APF基本原理

人工势场法的基本思想是在机器人运动环境中创建一个势场 U \boldsymbol{U} U,该势场分为两部分:

  • 由目标位置产生的指向目标的引力场 U g \boldsymbol{U}_g Ug
  • 由障碍物产生的远离障碍物的斥力场 U d \boldsymbol{U}_d Ud

通过障碍物的斥力场和目标位置的引力场共同作用形成一个虚拟的人工势场,再搜索一条势函数下降的方向,寻找一条无碰撞的最优路径,其原理如图所示。

在这里插入图片描述

常见的引力势函数为

U g = 1 2 λ g ( x − x g ) T ( x − x g ) \boldsymbol{U}_g=\frac{1}{2}\lambda _g\left( \boldsymbol{x}-\boldsymbol{x}_g \right) ^T\left( \boldsymbol{x}-\boldsymbol{x}_g \right) Ug=21λg(xxg)T(xxg)

其中 x \boldsymbol{x} x为机器人所处的位置向量, x g \boldsymbol{x}_g xg为目标位置向量。引力势函数的负梯度即为引力函数

F g = − ∇ x U g = − λ g ( x − x g ) \boldsymbol{F}_g=-\nabla _{\boldsymbol{x}}\boldsymbol{U}_g=-\lambda _g\left( \boldsymbol{x}-\boldsymbol{x}_g \right) Fg=xUg=λg(xxg)

常见的斥力势函数

U d = { 1 2 λ d ( 1 d − 1 d 0 ) 2 , d ⩽ d 0 0 , d > d 0 \boldsymbol{U}_d=\begin{cases} \frac{1}{2}\lambda _d\left( \frac{1}{d}-\frac{1}{d_0} \right) ^2, d\leqslant d_0\\ 0 , d>d_0\\\end{cases} Ud= 21λd(d1d01)2,dd00,d>d0

其中 d d d为当前机器人距离障碍物的最小距离, d 0 d_0 d0为斥力场作用限,常见的距离度量为欧式距离

d = ( x − x d ) T ( x − x d ) d=\sqrt{\left( \boldsymbol{x}-\boldsymbol{x}_d \right) ^T\left( \boldsymbol{x}-\boldsymbol{x}_d \right)} d=(xxd)T(xxd)

斥力势函数的负梯度即为斥力函数

F d = − ∇ x U d = { λ d ( 1 d − 1 d 0 ) 1 d 2 ∇ x d , d ⩽ d 0 0 , d > d 0 \boldsymbol{F}_d=-\nabla _{\boldsymbol{x}}\boldsymbol{U}_d=\begin{cases} \lambda _d\left( \frac{1}{d}-\frac{1}{d_0} \right) \frac{1}{d^2}\nabla _{\boldsymbol{x}}d, d\leqslant d_0\\ 0 , d>d_0\\\end{cases} Fd=xUd={λd(d1d01)d21xd,dd00,d>d0

在连续地图中, ∇ x d \nabla _{\boldsymbol{x}}d xd可以由距离函数微分导出;在栅格地图中, ∇ x d \nabla _{\boldsymbol{x}}d xd可以由栅格代价差分近似。基于引力和斥力,机器人受到的总力为

F = F g + ∑ F d \boldsymbol{F}=\boldsymbol{F}_g+\sum{\boldsymbol{F}_d} F=Fg+Fd

人工势场法的算法流程如表所示。

在这里插入图片描述

3 人工势场可视化

人工势场可视化如下所示,颜色越深说明势垒越高

在这里插入图片描述

4 仿真实现

4.1 ROS C++实现

核心代码如下所示

bool APFPlanner::computeVelocityCommands(geometry_msgs::Twist& cmd_vel)
{...// compute the tatget pose and force at the current stepEigen::Vector2d attr_force, rep_force, net_force;rep_force = getRepulsiveForce();while (plan_index_ < global_plan_.size()){target_ps_ = global_plan_[plan_index_];attr_force = getAttractiveForce(target_ps_);net_force = zeta_ * attr_force + eta_ * rep_force;...if (std::hypot(b_x_d, b_y_d) > p_window_)break;++plan_index_;}// smoothing the net force with historical net forces in the smoothing windowif (!hist_nf_.empty() && hist_nf_.size() >= s_window_)hist_nf_.pop_front();hist_nf_.push_back(net_force);net_force = Eigen::Vector2d(0.0, 0.0);for (int i = 0; i < hist_nf_.size(); ++i)net_force += hist_nf_[i];net_force /= hist_nf_.size();// set the smoothed new_v...// set the desired angle and the angle error...// position reached...return true;
}

在这里插入图片描述

4.2 Python实现

(待补充)

4.3 Matlab实现

function nextPos = obstacleAvoid(curPos, goal, obstacle, d0, weight)lambdaG = 1;lambdaD = weight;obstacleNum = size(obstacle, 1);Fg = -lambdaG * (curPos - goal);Fd = zeros(obstacleNum, 2);function d = calDistance(p1, p2)d = sqrt(sum((p1 - p2).^2));endfor i=1:obstacleNum% distance between current pose and obstacle_idi = calDistance(obstacle(i, :), curPos');if di <= d0Fd(i, :) = lambdaD / sqrt(di) * (1 / di - 1 / d0) *  ...[(curPos(1) - obstacle(i, 1))    ...(curPos(2) - obstacle(i, 2))];endendFall = Fg + sum(Fd', 2);nextPos = Fall + curPos;
end

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

这篇关于轨迹规划 | 图解分析人工势场算法APF(附ROS C++/Python/Matlab仿真)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/269805

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig