轨迹规划 | 图解分析人工势场算法APF(附ROS C++/Python/Matlab仿真)

本文主要是介绍轨迹规划 | 图解分析人工势场算法APF(附ROS C++/Python/Matlab仿真),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0 专栏介绍
  • 1 传统避障方法缺陷
  • 2 APF基本原理
  • 3 人工势场可视化
  • 4 仿真实现
    • 4.1 ROS C++实现
    • 4.2 Python实现
    • 4.3 Matlab实现

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 传统避障方法缺陷

传统的避障方法通常基于几何或图形算法,缺乏对环境动态性和实时性的适应能力。例如,环境在实时操作中可能会出现移动障碍物、临时障碍物等情况,传统方法需要对全局障碍重新建模,产生巨大的计算开销。

在这里插入图片描述

与之相对,人工势场法(Artificial Potential Field, APF)基于机器人与障碍物之间的相互作用来生成路径,因此不需要进行全局路径搜索,避免了大量的计算开销。这使得人工势场法能够实现快速的响应和实时的避障能力,非常适合需要快速决策和动态调整路径的应用场景。此外,通过合理设计势场函数和调节参数,可以灵活地处理复杂环境中的多障碍物情况,增加了系统的鲁棒性和可扩展性。

接下来详细介绍人工势场算法的基本原理。

2 APF基本原理

人工势场法的基本思想是在机器人运动环境中创建一个势场 U \boldsymbol{U} U,该势场分为两部分:

  • 由目标位置产生的指向目标的引力场 U g \boldsymbol{U}_g Ug
  • 由障碍物产生的远离障碍物的斥力场 U d \boldsymbol{U}_d Ud

通过障碍物的斥力场和目标位置的引力场共同作用形成一个虚拟的人工势场,再搜索一条势函数下降的方向,寻找一条无碰撞的最优路径,其原理如图所示。

在这里插入图片描述

常见的引力势函数为

U g = 1 2 λ g ( x − x g ) T ( x − x g ) \boldsymbol{U}_g=\frac{1}{2}\lambda _g\left( \boldsymbol{x}-\boldsymbol{x}_g \right) ^T\left( \boldsymbol{x}-\boldsymbol{x}_g \right) Ug=21λg(xxg)T(xxg)

其中 x \boldsymbol{x} x为机器人所处的位置向量, x g \boldsymbol{x}_g xg为目标位置向量。引力势函数的负梯度即为引力函数

F g = − ∇ x U g = − λ g ( x − x g ) \boldsymbol{F}_g=-\nabla _{\boldsymbol{x}}\boldsymbol{U}_g=-\lambda _g\left( \boldsymbol{x}-\boldsymbol{x}_g \right) Fg=xUg=λg(xxg)

常见的斥力势函数

U d = { 1 2 λ d ( 1 d − 1 d 0 ) 2 , d ⩽ d 0 0 , d > d 0 \boldsymbol{U}_d=\begin{cases} \frac{1}{2}\lambda _d\left( \frac{1}{d}-\frac{1}{d_0} \right) ^2, d\leqslant d_0\\ 0 , d>d_0\\\end{cases} Ud= 21λd(d1d01)2,dd00,d>d0

其中 d d d为当前机器人距离障碍物的最小距离, d 0 d_0 d0为斥力场作用限,常见的距离度量为欧式距离

d = ( x − x d ) T ( x − x d ) d=\sqrt{\left( \boldsymbol{x}-\boldsymbol{x}_d \right) ^T\left( \boldsymbol{x}-\boldsymbol{x}_d \right)} d=(xxd)T(xxd)

斥力势函数的负梯度即为斥力函数

F d = − ∇ x U d = { λ d ( 1 d − 1 d 0 ) 1 d 2 ∇ x d , d ⩽ d 0 0 , d > d 0 \boldsymbol{F}_d=-\nabla _{\boldsymbol{x}}\boldsymbol{U}_d=\begin{cases} \lambda _d\left( \frac{1}{d}-\frac{1}{d_0} \right) \frac{1}{d^2}\nabla _{\boldsymbol{x}}d, d\leqslant d_0\\ 0 , d>d_0\\\end{cases} Fd=xUd={λd(d1d01)d21xd,dd00,d>d0

在连续地图中, ∇ x d \nabla _{\boldsymbol{x}}d xd可以由距离函数微分导出;在栅格地图中, ∇ x d \nabla _{\boldsymbol{x}}d xd可以由栅格代价差分近似。基于引力和斥力,机器人受到的总力为

F = F g + ∑ F d \boldsymbol{F}=\boldsymbol{F}_g+\sum{\boldsymbol{F}_d} F=Fg+Fd

人工势场法的算法流程如表所示。

在这里插入图片描述

3 人工势场可视化

人工势场可视化如下所示,颜色越深说明势垒越高

在这里插入图片描述

4 仿真实现

4.1 ROS C++实现

核心代码如下所示

bool APFPlanner::computeVelocityCommands(geometry_msgs::Twist& cmd_vel)
{...// compute the tatget pose and force at the current stepEigen::Vector2d attr_force, rep_force, net_force;rep_force = getRepulsiveForce();while (plan_index_ < global_plan_.size()){target_ps_ = global_plan_[plan_index_];attr_force = getAttractiveForce(target_ps_);net_force = zeta_ * attr_force + eta_ * rep_force;...if (std::hypot(b_x_d, b_y_d) > p_window_)break;++plan_index_;}// smoothing the net force with historical net forces in the smoothing windowif (!hist_nf_.empty() && hist_nf_.size() >= s_window_)hist_nf_.pop_front();hist_nf_.push_back(net_force);net_force = Eigen::Vector2d(0.0, 0.0);for (int i = 0; i < hist_nf_.size(); ++i)net_force += hist_nf_[i];net_force /= hist_nf_.size();// set the smoothed new_v...// set the desired angle and the angle error...// position reached...return true;
}

在这里插入图片描述

4.2 Python实现

(待补充)

4.3 Matlab实现

function nextPos = obstacleAvoid(curPos, goal, obstacle, d0, weight)lambdaG = 1;lambdaD = weight;obstacleNum = size(obstacle, 1);Fg = -lambdaG * (curPos - goal);Fd = zeros(obstacleNum, 2);function d = calDistance(p1, p2)d = sqrt(sum((p1 - p2).^2));endfor i=1:obstacleNum% distance between current pose and obstacle_idi = calDistance(obstacle(i, :), curPos');if di <= d0Fd(i, :) = lambdaD / sqrt(di) * (1 / di - 1 / d0) *  ...[(curPos(1) - obstacle(i, 1))    ...(curPos(2) - obstacle(i, 2))];endendFall = Fg + sum(Fd', 2);nextPos = Fall + curPos;
end

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

这篇关于轨迹规划 | 图解分析人工势场算法APF(附ROS C++/Python/Matlab仿真)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/269805

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1