NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示)

本文主要是介绍NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示)|2020年

img

Fig. 1:通过场景的一些图片作为输入,我们提出一种优化连续的 5D 神经辐射场表示的方法

摘要

  • 我们提出一种方法,使用较少的视图(view)作为输入,对一个连续、隐含的体积场景函数(volumetric scene function)进行优化,从而实现了关于复杂场景的新视图合成的最先进的结果。
  • 我们的算法用全连接深度网络来表示场景,其输入是 5D 坐标空间位置 (x,y,z) 视角方向(viewing direction) (θ,ϕ);其输出是体积密度(volume density)和该空间位置上发射出来的辐射亮度(radiance,与视角相关)
  • 通过沿着相机光线(camera rays)获取 5D 坐标,使用经典的立体渲染(volume rendering)技术,我们将输出的颜色和密度投影到图像上,从而实现视图合成
  • 由于立体渲染是可导的,神经网络的优化,只需要提供一系列确定相机位姿的图像

1 介绍

  • 我们的工作,用新的方法解决了在**视图合成(view synthesis)**中长期以来的问题。

    • 我们直接优化一个连续的 5D 场景表示(scene representation)参数(网络权重),根据捕获到图像,最小化渲染误差。
    • 我们把静态场景表示为连续的 5D 函数(指输入是 5D ),输出在各个空间点 (x,y,z)(x,y,z) 和各个方向 (θ,ϕ)(θ,ϕ) 发射出来的辐射亮度密度(就像可导的透明度,控制穿过 (x,y,z)(x,y,z) 的射线,可以累加多少辐射亮度)
    • 我们的方法是优化一个深度全连接的神经网络没有用到卷积层,全连接神经网络又称多层感知器(MLP);我们用这个 MLP 来表示这样的函数:根据一个 5D 坐标 (x,y,z,θ,ϕ)(x,y,z,θ,ϕ),回归输出一个体积密度视角相关的 RGB 颜色
  • 整个流水线如下图所示:img

Fig. 2: 神经辐射场场景表示可导的渲染流程的概述。我们的图像合成,通过(图 a)沿着相机光线采样出 5D 坐标(位置和视角方向);(图 b)把位置喂给 MLP,生成颜色和体积密度;(图 c)使用立体渲染技术,利用这些值得到一张图像。由于这个渲染函数是可导的,因此我们可以最小化合成图像真实观察图像的残差,进行场景表示的优化。
  • 为了根据某一视角(viewpoint),渲染出这个神经辐射场(Neural Radiance Field, NeRF),我们:

​ 1.使相机光线穿过场景,生成一组 3D 采样点

​ 2.让这些 3D 点和对应的 3D 视角方向作为神经网络的输入,生成一组颜色密度

​ 3.使用经典的立体渲染技术,累加这些颜色和密度,得到 2D 图像

  • 由于以上过程是可导的,我们可以使用梯度下降来优化模型,最小化观测图像模型回归计算的图像之间的误差。
    • 这可以鼓励神经网络学习的场景模型具有一致性(coherent),即在包含场景内容的位置,可以得到较大的体积密度和准确的颜色。
  • 我们发现对于复杂的场景,用简单的方法优化 NeRF 效果不理想
    • 很难得到高分辨率的收敛结果;
    • 也不能高效利用相机光线所需的采样点。
  • 于是,我们这样解决以上问题:
    • 用一个位置编码(positional encoding)对输入 5D 坐标进行变换,使得 MLP 可以表示高频函数;
    • 提出层次化的采样流程(hierarchical sampling procedure),减少所需的采样点。
  • 我们的方法保留了体积表示的优点:
    • 可以表示复杂的几何和外观;
    • 可以通过投影图像进行梯度下降的优化。
  • 重要的是,我们的方法克服了体积表示的一个关键问题:在表示高分辨率的复杂场景时,离散的体素网格的存储空间成本非常高
  • 总结下来,本文的贡献如下:
    • 包含复杂几何和材质的连续场景的表示方法:使用参数化为 MLP 的 5D 神经辐射场

这篇关于NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/199368

相关文章

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

IDEA实现回退提交的git代码(四种常见场景)

《IDEA实现回退提交的git代码(四种常见场景)》:本文主要介绍IDEA实现回退提交的git代码(四种常见场景),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.已提交commit,还未push到远端(Undo Commit)2.已提交commit并push到