NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示)

本文主要是介绍NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示)|2020年

img

Fig. 1:通过场景的一些图片作为输入,我们提出一种优化连续的 5D 神经辐射场表示的方法

摘要

  • 我们提出一种方法,使用较少的视图(view)作为输入,对一个连续、隐含的体积场景函数(volumetric scene function)进行优化,从而实现了关于复杂场景的新视图合成的最先进的结果。
  • 我们的算法用全连接深度网络来表示场景,其输入是 5D 坐标空间位置 (x,y,z) 视角方向(viewing direction) (θ,ϕ);其输出是体积密度(volume density)和该空间位置上发射出来的辐射亮度(radiance,与视角相关)
  • 通过沿着相机光线(camera rays)获取 5D 坐标,使用经典的立体渲染(volume rendering)技术,我们将输出的颜色和密度投影到图像上,从而实现视图合成
  • 由于立体渲染是可导的,神经网络的优化,只需要提供一系列确定相机位姿的图像

1 介绍

  • 我们的工作,用新的方法解决了在**视图合成(view synthesis)**中长期以来的问题。

    • 我们直接优化一个连续的 5D 场景表示(scene representation)参数(网络权重),根据捕获到图像,最小化渲染误差。
    • 我们把静态场景表示为连续的 5D 函数(指输入是 5D ),输出在各个空间点 (x,y,z)(x,y,z) 和各个方向 (θ,ϕ)(θ,ϕ) 发射出来的辐射亮度密度(就像可导的透明度,控制穿过 (x,y,z)(x,y,z) 的射线,可以累加多少辐射亮度)
    • 我们的方法是优化一个深度全连接的神经网络没有用到卷积层,全连接神经网络又称多层感知器(MLP);我们用这个 MLP 来表示这样的函数:根据一个 5D 坐标 (x,y,z,θ,ϕ)(x,y,z,θ,ϕ),回归输出一个体积密度视角相关的 RGB 颜色
  • 整个流水线如下图所示:img

Fig. 2: 神经辐射场场景表示可导的渲染流程的概述。我们的图像合成,通过(图 a)沿着相机光线采样出 5D 坐标(位置和视角方向);(图 b)把位置喂给 MLP,生成颜色和体积密度;(图 c)使用立体渲染技术,利用这些值得到一张图像。由于这个渲染函数是可导的,因此我们可以最小化合成图像真实观察图像的残差,进行场景表示的优化。
  • 为了根据某一视角(viewpoint),渲染出这个神经辐射场(Neural Radiance Field, NeRF),我们:

​ 1.使相机光线穿过场景,生成一组 3D 采样点

​ 2.让这些 3D 点和对应的 3D 视角方向作为神经网络的输入,生成一组颜色密度

​ 3.使用经典的立体渲染技术,累加这些颜色和密度,得到 2D 图像

  • 由于以上过程是可导的,我们可以使用梯度下降来优化模型,最小化观测图像模型回归计算的图像之间的误差。
    • 这可以鼓励神经网络学习的场景模型具有一致性(coherent),即在包含场景内容的位置,可以得到较大的体积密度和准确的颜色。
  • 我们发现对于复杂的场景,用简单的方法优化 NeRF 效果不理想
    • 很难得到高分辨率的收敛结果;
    • 也不能高效利用相机光线所需的采样点。
  • 于是,我们这样解决以上问题:
    • 用一个位置编码(positional encoding)对输入 5D 坐标进行变换,使得 MLP 可以表示高频函数;
    • 提出层次化的采样流程(hierarchical sampling procedure),减少所需的采样点。
  • 我们的方法保留了体积表示的优点:
    • 可以表示复杂的几何和外观;
    • 可以通过投影图像进行梯度下降的优化。
  • 重要的是,我们的方法克服了体积表示的一个关键问题:在表示高分辨率的复杂场景时,离散的体素网格的存储空间成本非常高
  • 总结下来,本文的贡献如下:
    • 包含复杂几何和材质的连续场景的表示方法:使用参数化为 MLP 的 5D 神经辐射场

这篇关于NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/199368

相关文章

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

数据视图(AngularJS)

<!DOCTYPE html><html ng-app="home.controller"><head><meta charset="utf-8"><title>数据视图</title><link href="page/common/css/bootstrap.min.css" rel="stylesheet"><script src="page/common/js/angular.js"></

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

嵌入式技术的核心技术有哪些?请详细列举并解释每项技术的主要功能和应用场景。

嵌入式技术的核心技术包括处理器技术、IC技术和设计/验证技术。 1. 处理器技术    通用处理器:这类处理器适用于不同类型的应用,其主要特征是存储程序和通用的数据路径,使其能够处理各种计算任务。例如,在智能家居中,通用处理器可以用于控制和管理家庭设备,如灯光、空调和安全系统。    单用途处理器:这些处理器执行特定程序,如JPEG编解码器,专门用于视频信息的压缩或解压。在数字相机中,单用途

12C 新特性,MOVE DATAFILE 在线移动 包括system, 附带改名 NID ,cdb_data_files视图坏了

ALTER DATABASE MOVE DATAFILE  可以改名 可以move file,全部一个命令。 resue 可以重用,keep好像不生效!!! system照移动不误-------- SQL> select file_name, status, online_status from dba_data_files where tablespace_name='SYSTEM'

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

架构全景视图

文章目录 一、战略规划二、业务架构Business Architecture2.1业务架构定义2.2 业务架构组成2.3 TOGAF2.3.1 Archimate建模(重要) 三、数据架构Data Architecture3.1 数据架构定义3.2 数据架构组成 四、应用架构Application Architecture4.1 应用架构定义4.2 应用架构组成 五、技术架构Technol

从计组中从重温C中浮点数表示及C程序翻译过程

目录 移码​编辑  传统浮点表示格式 浮点数的存储(ieee 754)->修炼内功 例子:   ​编辑 浮点数取的过程   C程序翻译过程 移码  传统浮点表示格式 浮点数的存储(ieee 754)->修炼内功 根据国际标准IEEE(电⽓和电⼦⼯程协会)  32位 例子:    64位    IEEE754对有效数字M和

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探

『功能项目』更换URP场景【32】

上一章已经将项目从普通管线升级到了URP管线 现在我们打开上一篇31项目优化 - 默认管线转URP的项目, 进入战斗场景 将Land的子级全部隐藏 将新的URP场景预制体拖拽至Land子级 对场景预制体完全解压缩 将Terrain拖拽至Land的直接子级 将Terrain设置为Land 与 静态Static 清除烘培 重新烘培 修改脚本:LoadRe