neural专题

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

A Comprehensive Survey on Graph Neural Networks笔记

一、摘要-Abstract 1、传统的深度学习模型主要处理欧几里得数据(如图像、文本),而图神经网络的出现和发展是为了有效处理和学习非欧几里得域(即图结构数据)的信息。 2、将GNN划分为四类:recurrent GNNs(RecGNN), convolutional GNNs,(GCN), graph autoencoders(GAE), and spatial–temporal GNNs(S

OpenSNN推文:神经网络(Neural Network)相关论文最新推荐(九月份)(一)

基于卷积神经网络的活动识别分析系统及应用 论文链接:oalib简介:  活动识别技术在智能家居、运动评估和社交等领域得到广泛应用。本文设计了一种基于卷积神经网络的活动识别分析与应用系统,通过分析基于Android搭建的前端采所集的三向加速度传感器数据,对用户的当前活动进行识别。实验表明活动识别准确率满足了应用需求。本文基于识别的活动进行卡路里消耗计算,根据用户具体的活动、时间以及体重计算出相应活

Convolutional Neural Networks for Sentence Classification论文解读

基本信息 作者Yoon Kimdoi发表时间2014期刊EMNLP网址https://doi.org/10.48550/arXiv.1408.5882 研究背景 1. What’s known 既往研究已证实 CV领域著名的CNN。 2. What’s new 创新点 将CNN应用于NLP,打破了传统NLP任务主要依赖循环神经网络(RNN)及其变体的局面。 用预训练的词向量(如word2v

Show,Attend and Tell: Neural Image Caption Generation with Visual Attention

简单的翻译阅读了一下 Abstract 受机器翻译和对象检测领域最新工作的启发,我们引入了一种基于注意力的模型,该模型可以自动学习描述图像的内容。我们描述了如何使用标准的反向传播技术,以确定性的方式训练模型,并通过最大化变分下界随机地训练模型。我们还通过可视化展示了模型如何能够自动学习将注视固定在显着对象上,同时在输出序列中生成相应的单词。我们通过三个基准数据集(Flickr9k,Flickr

Image Transformation can make Neural Networks more robust against Adversarial Examples

Image Transformation can make Neural Networks more robust against Adversarial Examples 创新点 1.旋转解决误分类 总结 可以说简单粗暴有效

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)1.9-1.10

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第一周 卷积神经网络(Foundations of Convolutional Neural Networks)1.9 池化层(Pooling layers)1.10 卷 积 神 经 网 络 示 例 ( Convolutional neural network example) 第四门课

neural-admixture:基于AI的快速基因组聚类

最近学习祖源分析方面的内容,发现已经有了GPU版的软件,可以几十倍地加快运算速度,推荐使用!小数据集的话家用显卡即可hold住,十分给力! ADMIXTURE 是常用的群体遗传学分析工具,可以估计个体的祖先成分。使用neural-admixture 可以将一个月的连续计算时间缩短到几个小时。多头方法允许神经 ADMIXTURE 通过在单个集群中计算多个集群数来进一步加速 在一次运行中计算多个集群数

贝叶斯神经网络的前向传播过程中,噪声参数和其他参数考虑 bayesian neural network

在贝叶斯神经网络的前向传播过程中,噪声参数 在贝叶斯神经网络(BNN)中,噪声模拟是量化预测不确定性的关键部分。噪声参数通常用于表示模型的观测不确定性,即数据本身的内在变异性。以下是一些在BNN中常用的噪声模拟方法: 高斯噪声:在许多情况下,观测数据被假设为遵循高斯分布,即正态分布。这种方法在BNN中非常常见,因为它的数学性质使得推断过程相对简单。 Gamma分布:Gamma分布用于模拟噪

YOLO前篇---Real-Time Grasp Detection Using Convolutional Neural Networks

论文地址:https://arxiv.org/abs/1412.3128 1. 摘要 比目前最好的方法提高了14%的精度,在GPU上能达到13FPS 2. 基于神经网络的抓取检测 A 结构 使用AlexNet网络架构,5个卷积层+3个全连接层,卷积层有正则化和最大池化层网络结构示意图如下 B 直接回归抓取 最后一个全连接层输出6个神经元,前4个与位置和高度相关,另外2个用来表示方向

机器翻译 -- Neural Machine Translation

本文是基于吴恩达老师《深度学习》第五课第三周练习题所做。 0.背景介绍  为探究机器翻译的奥秘,我们首先从日期翻译着手。本程序所需的第三方库、数据集及辅助程序,可点击此处下载。 from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input, LSTM, Multiplyfrom keras.layers i

构建RNN(Recurrent Neural Network)

目前RNN网络可以在深度学习框架下通过调用函数实现(比如:tf.nn.rnn_cell),但为了掌握更多RNN的细节,我们还是需要使用numpy来逐步实现。 由于RNN网络具有“记忆力”,因此非常适合NLP和序列任务。RNN网络每次读取一个输入X(t),输入信息从当前时间步传到下一步的过程中,网络隐含层的激活函数会“记住”一些信息或上下文内容。这种机制允许单向RNN从前面的输入中获取信息以处理后

Fast Neural Style在win10上运行

fast-neural-style-master(pytorch):https://github.com/pytorch/examples/tree/master/fast_neural_style(测试的该例子)fast-neural-style-tensorflow-master(tensorflow):https://github.com/hzy46/fast-neural-style-te

支持pyro 1.8以上的贝叶斯神经网络实现 bnn Bayesian Neural Network pyro ,人工智能

Example: Bayesian Neural Network — NumPyro documentation https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/DL2/Bayesian_Neural_Networks/dl2_bnn_tut1_students_with_answers.html 未

Visual Convolutional Neural Network论文关键点

前言:这篇论文是2013年11月发表在CVPR上的,当时正值卷积神经网络在计算机视觉任务中初放光彩。17年刚刚接触深度学习的时候看过这篇论文,当时也是在组会上讲过。以下就是大概的讲解思路。但是当时看这篇论文没有太大的感觉,觉得这篇论文只是做了一个非常简单的事情,所以主要是从宏观上说明了一下可视化卷积神经网络的作用。前两天偶然翻出来这篇论文,却觉得论文里有些地方挺有意思的,果然论文和人颇有相似,讲

python 实现convolution neural network卷积神经网络算法

convolution neural network卷积神经网络算法介绍 卷积神经网络(Convolutional Neural Networks, CNN)是一种包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks, FNN),是深度学习的代表算法之一。以下是关于卷积神经网络算法的详细解释: 基本原理 CNN的核心思想是通过模拟人类视觉系统的工作

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 精读

1 传统视图合成和NeRF(Neural Radiance Fields) 1.1 联系 传统视图合成和NeRF的共同目标都是从已有的视角图像中生成新的视角图像。两者都利用已有的多视角图像数据来预测或合成从未见过的视角。 1.2 区别 1.2.1 几何表示方式 传统视图合成:通常使用显式几何模型(如深度图、网格、点云)或其他图像处理方法(如基于图像拼接或光流的方法)来生成新的视图。这些

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 翻译

NeRF:将场景表示为用于视图合成的神经辐射场 引言。我们提出了一种方法,该方法通过使用稀疏的输入视图集优化底层连续体场景函数来实现用于合成复杂场景的新视图的最新结果。我们的算法使用全连通(非卷积)深度网络来表示场景,其输入是单个连续的5D坐标(空间位置(x,y,z)和观察方向(θ,φ)),其输出是该空间位置处的体积密度和与观察相关的发射辐射。我们通过查询沿着相机光线的5D坐标来合成视图,并使用

【论文阅读】Model Stealing Attacks Against Inductive Graph Neural Networks(2021)

摘要 Many real-world data(真实世界的数据) come in the form of graphs(以图片的形式). Graph neural networks (GNNs 图神经网络), a new family of machine learning (ML) models, have been proposed to fully leverage graph data(

论文翻译:Are aligned neural networks adversarially aligned?

Are aligned neural networks adversarially aligned? https://proceedings.neurips.cc/paper_files/paper/2023/hash/c1f0b856a35986348ab3414177266f75-Abstract-Conference.html 对齐的神经网络是否对抗性对齐? 文章目录 对齐的神经网

论文《Tree Decomposed Graph Neural Network》笔记

【TDGNN】本文提出了一种树分解方法来解决不同层邻域之间的特征平滑问题,增加了网络层配置的灵活性。通过图扩散过程表征了多跳依赖性(multi-hop dependency),构建了TDGNN模型,该模型可以灵活地结合大感受场的信息,并利用多跳依赖性进行信息聚合。 本文发表在2021年CIKM会议上,作者学校:Vanderbilt University,引用量:59。 CIKM会议简介:全称C

ResNeXt - Aggregated Residual Transformations for Deep Neural Networks

《Aggregated Residual Transformations for Deep Neural Networks》是Saining Xie等人于2016年公开在arXiv上: https://arxiv.org/pdf/1611.05431.pdf 创新点 1.在传统Resnet基础上采用group convolution,在不增加参数量的前提下,获得更强的representat

Glancing Transformer for Non-Autoregressive Neural Machine Translation翻译

公众号 系统之神与我同在 图1:机器翻译方法的概率模型。(b)普通的神经机器翻译(NAT)采用条件输入凹痕LM。©掩蔽-预测神经网络翻译(NAT)使用掩蔽LM(MLM)和RE需要多次解码。(d)我们提出的Glancing语言模型(GLM)利用解码器的预测来决定Glancing在训练期间进行采样策略,并且在推理期间只需要一次解码。 摘要 最近关于非自回归神经网络翻译(NAT)的研究旨在,

Age and gender estimation based on Convolutional Neural Network and TensorFlow

训练数据处理 imdb数据提取 gender: 0 for female and 1 for male, NaN if unknown age: 年龄分为101类,分别为从0到100岁. 将训练数据转换为tfrecords格式,命令为, python convert_to_records_multiCPU.py --imdb --nworks 8 --imdb_db /home/rese

图神经网络模型 The Graph Neural Network Model

图神经网络模型 摘要引言图神经网络模型符号模型状态值的计算学习算法变换和输出函数实现Linear GNNNonlinear GNN 实验结果The Mutagenesis Problem 计算复杂性 The Graph Neural Network Model 摘要 数据包含许多潜在关系可以表示为图,这些数据存在于科学和工程的众多领域,比如计算机视觉、分子化学、分子生物、模

Time-Delay Neural Network(TDNN)-下

前言 本篇博客对TDNN网络结构的特性进行梳理,使读者了解设计所考虑的问题,关于其结构请参考博客Time-Delay Neural Network(TDNN)-上。博客基于对论文 Phoneme Recognition Using Time-Delay Neural Network 的阅读和理解,如有谬误,还望指出,不胜感激。 正文 语音识别的小伙伴都知道,语音识别通常要把一段不等场的语音切