摘要 Many real-world data(真实世界的数据) come in the form of graphs(以图片的形式). Graph neural networks (GNNs 图神经网络), a new family of machine learning (ML) models, have been proposed to fully leverage graph data(
训练数据处理 imdb数据提取 gender: 0 for female and 1 for male, NaN if unknown age: 年龄分为101类,分别为从0到100岁. 将训练数据转换为tfrecords格式,命令为, python convert_to_records_multiCPU.py --imdb --nworks 8 --imdb_db /home/rese
图神经网络模型 摘要引言图神经网络模型符号模型状态值的计算学习算法变换和输出函数实现Linear GNNNonlinear GNN 实验结果The Mutagenesis Problem 计算复杂性 The Graph Neural Network Model 摘要 数据包含许多潜在关系可以表示为图,这些数据存在于科学和工程的众多领域,比如计算机视觉、分子化学、分子生物、模