构建RNN(Recurrent Neural Network)

2024-08-28 21:48

本文主要是介绍构建RNN(Recurrent Neural Network),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目前RNN网络可以在深度学习框架下通过调用函数实现(比如:tf.nn.rnn_cell),但为了掌握更多RNN的细节,我们还是需要使用numpy来逐步实现。

由于RNN网络具有“记忆力”,因此非常适合NLP和序列任务。RNN网络每次读取一个输入X(t),输入信息从当前时间步传到下一步的过程中,网络隐含层的激活函数会“记住”一些信息或上下文内容。这种机制允许单向RNN从前面的输入中获取信息以处理后续输入,同时使得双向RNN网络能够从过去和未来的获取上下文信息。

导入所需的第三方库,其中所用辅助程序可点击此处下载。

import numpy as np
from rnn_utils import *

1.基本RNN的前向传播

基本RNN结构如下,其中Tx = Ty:

1.1RNN单元

RNN网络可以看做是一个单元的重复执行,首先要执行的单一时间步的计算,计算操作如图所示:

如图所示,需要计算的步骤如下:

(1)计算隐层状态a<t>:  

(2)计算预测值y<t>_hat:

(3)在缓存中存储cache:(a<t>,a<t-1>,X<t>,parameters)

(4)返回a<t>,y<t>_hat 和 cache

我们将m个样本向量化,因此X<t>的维度是(n_x, m),a<t>的维度是(n_a, m)

def rnn_cell_forward(xt, a_prev, parameters):Wax = parameters["Wax"]Waa = parameters["Waa"]Wya = parameters["Wya"]ba = parameters["ba"]by = parameters["by"]a_next = np.tanh(np.dot(Waa, a_prev) + np.dot(Wax, xt) + ba)yt_pred = softmax(np.dot(Wya, a_next) + by)cache = (a_next, a_prev, xt, parameters)return a_next, yt_pred, cache
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
Waa = np.random.randn(5,5)
Wax = np.random.randn(5,3)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}a_next, yt_pred, cache = rnn_cell_forward(xt, a_prev, parameters)
print("a_next[4] = ", a_next[4])
print("a_next.shape = ", a_next.shape)
print("yt_pred[1] =", yt_pred[1])
print("yt_pred.shape = ", yt_pred.shape)
a_next[4] =  [ 0.59584544  0.18141802  0.61311866  0.99808218  0.85016201  0.99980978-0.18887155  0.99815551  0.6531151   0.82872037]
a_next.shape =  (5, 10)
yt_pred[1] = [0.9888161  0.01682021 0.21140899 0.36817467 0.98988387 0.889452120.36920224 0.9966312  0.9982559  0.17746526]
yt_pred.shape =  (2, 10)

1.2RNN前向传播

 RNN的结构实质上就是1.1中介绍基本单元的多次组合,对于每一个单元将a<t-1>和X<t>,输出为a<t>和y<t>预测值,下图是一个RNN模型的前向传播的过程。

 

def rnn_forward(x, a0, parameters):caches = []n_x, m, T_x = x.shapen_y, n_a = parameters["Wya"].shapea = np.zeros((n_a, m, T_x))y_pred = np.zeros((n_y, m, T_x))a_next = a0for t in range(T_x):a_next, yt_pred, cache = rnn_cell_forward(x[:,:,t], a_next, parameters)a[:,:,t] = a_nexty_pred[:,:,t] = yt_predcaches.append(cache)caches = (caches, x)return a, y_pred, caches
np.random.seed(1)
x = np.random.randn(3,10,4)
a0 = np.random.randn(5,10)
Waa = np.random.randn(5,5)
Wax = np.random.randn(5,3)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}a, y_pred, caches = rnn_forward(x, a0, parameters)
print("a[4][1] = ", a[4][1])
print("a.shape = ", a.shape)
print("y_pred[1][3] =", y_pred[1][3])
print("y_pred.shape = ", y_pred.shape)
print("caches[1][1][3] =", caches[1][1][3])
print("len(caches) = ", len(caches))
a[4][1] =  [-0.99999375  0.77911235 -0.99861469 -0.99833267]
a.shape =  (5, 10, 4)
y_pred[1][3] = [0.79560373 0.86224861 0.11118257 0.81515947]
y_pred.shape =  (2, 10, 4)
caches[1][1][3] = [-1.1425182  -0.34934272 -0.20889423  0.58662319]
len(caches) =  2

目前我们已经完成了RNN的前向传播过程,这个模型已经可以解决不少训练问题了,但是存在着梯度消失的问题。下面我们将构建LSTM来解决这个问题,以便模型可以很好的利用上下文信息。

2.长短时记忆网络(LSTM)

LSTM的主要特点是增加了遗忘门、更新门和输出门,如下图所示;

 

LSTM网络也是有LSTM Cell堆叠构成的。

(1)遗忘门

假设我们在阅读一段文字,主语的单复数形式决定着后文谓语的形式,因此我们需要利用LSTM的记忆功能。但是当阅读到下一段主语形式变化了,LSTM需要丢弃之前的记忆,这个功能便需要遗忘门实现,公式如下:

 上式的结果是介于0-1的矢量,如果接近0,意味着LSTM应移除记忆信息;如果为1,意味着需要保持c<t-1>的信息。

(2)更新门

一旦决定遗忘主语的单数形式

这篇关于构建RNN(Recurrent Neural Network)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115978

相关文章

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

maven 编译构建可以执行的jar包

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」👈,「stormsha的知识库」👈持续学习,不断总结,共同进步,为了踏实,做好当下事儿~ 专栏导航 Python系列: Python面试题合集,剑指大厂Git系列: Git操作技巧GO

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者

Jenkins构建Maven聚合工程,指定构建子模块

一、设置单独编译构建子模块 配置: 1、Root POM指向父pom.xml 2、Goals and options指定构建模块的参数: mvn -pl project1/project1-son -am clean package 单独构建project1-son项目以及它所依赖的其它项目。 说明: mvn clean package -pl 父级模块名/子模块名 -am参数

JAVA用最简单的方法来构建一个高可用的服务端,提升系统可用性

一、什么是提升系统的高可用性 JAVA服务端,顾名思义就是23体验网为用户提供服务的。停工时间,就是不能向用户提供服务的时间。高可用,就是系统具有高度可用性,尽量减少停工时间。如何用最简单的方法来搭建一个高效率可用的服务端JAVA呢? 停工的原因一般有: 服务器故障。例如服务器宕机,服务器网络出现问题,机房或者机架出现问题等;访问量急剧上升,导致服务器压力过大导致访问量急剧上升的原因;时间和