Fast Neural Style在win10上运行

2024-08-27 18:08
文章标签 运行 win10 style neural fast

本文主要是介绍Fast Neural Style在win10上运行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

fast-neural-style-master(pytorch):https://github.com/pytorch/examples/tree/master/fast_neural_style(测试的该例子)
fast-neural-style-tensorflow-master(tensorflow):https://github.com/hzy46/fast-neural-style-tensorflow(没有测试)

环境

  • python3.7
  • cuda10.0
  • cudnn-10.0-windows10-x64-v7.6.1.34
  • numpy1.16.0
  • pillow6.2.1
  • scipy1.2.1
  • pytorch1.2.0
  • torchvision0.4.0

权重下载

链接:https://pan.baidu.com/s/1iWS0em5bZvkVC0CSTHotDg 
提取码:ublc

测试

python neural_style/neural_style.py eval --content-image </path/to/content/image> --model </path/to/saved/model> --output-image </path/to/output/image> --cuda 0

  • --content-image: path to content image you want to stylize.内容图像
  • --model: saved model to be used for stylizing the image (eg: mosaic.pth)模型,其实就是风格图片最终生成的
  • --output-image: path for saving the output image.输出图像
  • --content-scale: factor for scaling down the content image if memory is an issue (eg: value of 2 will halve the height and width of content-image)
  • --cuda: set it to 1 for running on GPU, 0 for CPU.

例如我测试的代码

E:\work\private\neural_style\examples-master\fast_neural_style>python neural_style/neural_style.py eval --content-image E:\work\private\neural_style\examples-master\fast_neural_style\images\content-images\amber.jpg --model E:\work\private\neural_style\examples-master\fast_neural_style\saved_models\candy.pth --output-image E:\work\private\neural_style\examples-master\fast_neural_style\out.png --cuda 1 

内容图像

风格图像(其实就是save_models中解压出来的candy.pth)

输出图像

训练

python neural_style/neural_style.py train --dataset </path/to/train-dataset> --style-image </path/to/style/image> --save-model-dir </path/to/save-model/folder> --epochs 2 --cuda 1

  • --dataset: path to training dataset, the path should point to a folder containing another folder with all the training images. I used COCO 2014 Training images dataset [80K/13GB] (download).
  • --style-image: path to style-image.
  • --save-model-dir: path to folder where trained model will be saved.
  • --cuda: set it to 1 for running on GPU, 0 for CPU.

Refer to neural_style/neural_style.py for other command line arguments. For training new models you might have to tune the values of --content-weight and --style-weight. The mosaic style model shown above was trained with --content-weight 1e5 and --style-weight 1e10. The remaining 3 models were also trained with similar order of weight parameters with slight variation in the --style-weight (5e10 or 1e11).

上面这段英文就告诉我们,这个内容和风格的权重由于你训练的图像不同,可能需要做出相应的改变。

这篇关于Fast Neural Style在win10上运行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112388

相关文章

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下,使LabVIEW开发的程序保持稳定运行的有效策略。 LabVIEW版本兼容性 LabVIEW各版本对不同操作系统的支持存在差异。因此,在开发程序时,尽量使用

如何在运行时修改serialVersionUID

优质博文:IT-BLOG-CN 问题 我正在使用第三方库连接到外部系统,一切运行正常,但突然出现序列化错误 java.io.InvalidClassException: com.essbase.api.base.EssException; local class incompatible: stream classdesc serialVersionUID = 90314637791991

win7+ii7+tomcat7运行javaWeb开发的程序

转载请注明出处:陈科肇 1.前提准备: 操作系统:windows 7 旗舰版   x64 JDK:jdk1.7.0_79_x64(安装目录:D:\JAVA\jdk1.7.0_79_x64) tomcat:32-bit64-bit Windows Service Installer(安装目录:D:\0tomcat7SerV) tomcat-connectors:tomcat-connect

php 7之PhpStorm + Nginx + Xdebug运行调试

操作环境: windows PHP 7.1.10 PhpStorm-2017.2.4 Xdebug 2.5.4 Xdebug helper 1.6.1 nginx-1.12.2 注意查看端口占用情况 netstat -ano //查看所以端口netstat -aon|findstr "80" //查看指定端口占用情况 比如80端口查询情况 TCP 0.0.0.0:8

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

[轻笔记] ubuntu Shell脚本实现监视指定进程的运行状态,并能在程序崩溃后重启动该程序

根据网上博客实现,发现只能监测进程离线,然后对其进行重启;然而,脚本无法打印程序正常状态的信息。自己通过不断修改测试,发现问题主要在重启程序的命令上(需要让重启的程序在后台运行,不然会影响监视脚本进程,使其无法正常工作)。具体程序如下: #!/bin/bashwhile [ 1 ] ; dosleep 3if [ $(ps -ef|grep exe_name|grep -v grep|

stl的sort和手写快排的运行效率哪个比较高?

STL的sort必然要比你自己写的快排要快,因为你自己手写一个这么复杂的sort,那就太闲了。STL的sort是尽量让复杂度维持在O(N log N)的,因此就有了各种的Hybrid sort algorithm。 题主你提到的先quicksort到一定深度之后就转为heapsort,这种是introsort。 每种STL实现使用的算法各有不同,GNU Standard C++ Lib

彻底解决win10系统Tomcat10控制台输出中文乱码

彻底解决Tomcat10控制台输出中文乱码 首先乱码问题的原因通俗的讲就是读的编码格式和写的解码格式不一致,比如最常见的两种中文编码UTF-8和GBK,UTF-8一个汉字占三个字节,GBK一个汉字占两个字节,所以当编码与解码格式不一致时,输出端当然无法识别这是啥,所以只能以乱码代替。 值得一提的是GBK不是国家标准编码,常用的国标有两,一个是GB2312,一个是GB18030 GB1

win10不用anaconda安装tensorflow-cpu并导入pycharm

记录一下防止忘了 一、前提:已经安装了python3.6.4,想用tensorflow的包 二、在pycharm中File-Settings-Project Interpreter点“+”号导入很慢,所以直接在cmd中使用 pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow-cpu下载好,默认下载的tensorflow